IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v49y2015icp638-645.html
   My bibliography  Save this article

Decomposition analysis of Cuban energy production and use: Analysis of energy transformation for sustainability

Author

Listed:
  • Vazquez, Luis
  • Luukkanen, Jyrki
  • Kaisti, Hanna
  • Käkönen, Mira
  • Majanne, Yrjö

Abstract

The aim of the article to analyse the changes in Cuban energy system. It uses decomposition analysis to reveal the impacts of the changes in key drivers of energy consumption and CO2 emissions. The Cuban Energy Revolution, which was started in 2006, was the policy response to the local energy crisis; oil imports caused serious balance of payment problems, the old centralised electricity production system was inefficient and hurricanes caused wide damage to the transmission and distribution system resulting large black outs. The Energy Revolution has been quite successful in changing the energy use patterns in Cuban households. Switch from kerosene to electricity in cooking and using energy saving pressure cookers have had an effect on energy efficiency. In addition, the decentralisation of electricity production has increased the reliability of supply and improved the efficiency when new smaller scale power plants have replaced older technology. The energy revolution has, so far not had much impact on energy use in industry, transport and agriculture, which are the areas where the future policies should be directed.

Suggested Citation

  • Vazquez, Luis & Luukkanen, Jyrki & Kaisti, Hanna & Käkönen, Mira & Majanne, Yrjö, 2015. "Decomposition analysis of Cuban energy production and use: Analysis of energy transformation for sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 638-645.
  • Handle: RePEc:eee:rensus:v:49:y:2015:i:c:p:638-645
    DOI: 10.1016/j.rser.2015.04.156
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115004268
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Ang, B. W. & Pandiyan, G., 1997. "Decomposition of energy-induced CO2 emissions in manufacturing," Energy Economics, Elsevier, vol. 19(3), pages 363-374, July.
    3. Suárez, José Antonio & Beatón, Pedro Anibal & Escalona, Ronoldy Faxas & Montero, Ofelia Pérez, 2012. "Energy, environment and development in Cuba," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2724-2731.
    4. Herrera, I. & De Ruyck, J. & Ocaña, V.S. & Rubio, M. & Martínez, R.M. & Núñez, V., 2013. "Environmental impact of decentralized power generation in Santa Clara City, Cuba: An integrated assessment based on technological and human health risk indicators," Applied Energy, Elsevier, vol. 109(C), pages 24-35.
    5. Wu, Libo & Kaneko, Shinji & Matsuoka, Shunji, 2005. "Driving forces behind the stagnancy of China's energy-related CO2 emissions from 1996 to 1999: the relative importance of structural change, intensity change and scale change," Energy Policy, Elsevier, vol. 33(3), pages 319-335, February.
    6. Okushima, Shinichiro & Tamura, Makoto, 2007. "Multiple calibration decomposition analysis: Energy use and carbon dioxide emissions in the Japanese economy, 1970-1995," Energy Policy, Elsevier, vol. 35(10), pages 5156-5170, October.
    7. Wright, Evelyn L. & Belt, Juan A.B. & Chambers, Adam & Delaquil, Pat & Goldstein, Gary, 2010. "A scenario analysis of investment options for the Cuban power sector using the MARKAL model," Energy Policy, Elsevier, vol. 38(7), pages 3342-3355, July.
    8. Ang, B. W. & Liu, F. L. & Chew, E. P., 2003. "Perfect decomposition techniques in energy and environmental analysis," Energy Policy, Elsevier, vol. 31(14), pages 1561-1566, November.
    9. Kaivo-oja, Jari & Luukkanen, Jyrki, 2004. "The European Union balancing between CO2 reduction commitments and growth policies: decomposition analyses," Energy Policy, Elsevier, vol. 32(13), pages 1511-1530, September.
    10. Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
    11. Wang, Can & Chen, Jining & Zou, Ji, 2005. "Decomposition of energy-related CO2 emission in China: 1957–2000," Energy, Elsevier, vol. 30(1), pages 73-83.
    12. Diakoulaki, D. & Mavrotas, G. & Orkopoulos, D. & Papayannakis, L., 2006. "A bottom-up decomposition analysis of energy-related CO2 emissions in Greece," Energy, Elsevier, vol. 31(14), pages 2638-2651.
    13. Schipper, Lee & Murtishaw, Scott & Khrushch, Marta & Ting, Michael & Karbuz, Sohbet & Unander, Fridtjof, 2001. "Carbon emissions from manufacturing energy use in 13 IEA countries: long-term trends through 1995," Energy Policy, Elsevier, vol. 29(9), pages 667-688, July.
    14. Liaskas, K. & Mavrotas, G. & Mandaraka, M. & Diakoulaki, D., 2000. "Decomposition of industrial CO2 emissions:: The case of European Union," Energy Economics, Elsevier, vol. 22(4), pages 383-394, August.
    15. Lu, I.J. & Lin, Sue J. & Lewis, Charles, 2007. "Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea," Energy Policy, Elsevier, vol. 35(6), pages 3226-3235, June.
    16. Yabe, Nobuko, 2004. "An analysis of CO2 emissions of Japanese industries during the period between 1985 and 1995," Energy Policy, Elsevier, vol. 32(5), pages 595-610, March.
    17. Paul, Shyamal & Bhattacharya, Rabindra Nath, 2004. "CO2 emission from energy use in India: a decomposition analysis," Energy Policy, Elsevier, vol. 32(5), pages 585-593, March.
    18. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    19. Kim, Yeonbae & Worrell, Ernst, 2002. "International comparison of CO2 emission trends in the iron and steel industry," Energy Policy, Elsevier, vol. 30(10), pages 827-838, August.
    20. Chadee, Xsitaaz T. & Clarke, Ricardo M., 2014. "Large-scale wind energy potential of the Caribbean region using near-surface reanalysis data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 45-58.
    21. Alonso-Pippo, Walfrido & Luengo, Carlos A. & Koehlinger, John & Garzone, Pietro & Cornacchia, Giacinto, 2008. "Sugarcane energy use: The Cuban case," Energy Policy, Elsevier, vol. 36(6), pages 2163-2181, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nielsen, Hana & Warde, Paul & Kander, Astrid, 2018. "East versus West: Energy intensity in coal-rich Europe, 1800–2000," Energy Policy, Elsevier, vol. 122(C), pages 75-83.
    2. Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2017. "Driving forces for aggregate energy consumption: A cross-country approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1033-1050.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    2. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Transport sector CO2 emissions growth in Asia: Underlying factors and policy options," Energy Policy, Elsevier, vol. 37(11), pages 4523-4539, November.
    3. Robaina Alves, Margarita & Moutinho, Victor, 2013. "Decomposition analysis and Innovative Accounting Approach for energy-related CO2 (carbon dioxide) emissions intensity over 1996–2009 in Portugal," Energy, Elsevier, vol. 57(C), pages 775-787.
    4. Moutinho, Victor & Moreira, António Carrizo & Silva, Pedro Miguel, 2015. "The driving forces of change in energy-related CO2 emissions in Eastern, Western, Northern and Southern Europe: The LMDI approach to decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1485-1499.
    5. Yue-Jun Zhang & Ya-Bin Da, 2013. "Decomposing the changes of energy-related carbon emissions in China: evidence from the PDA approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 1109-1122, October.
    6. Margarida R. Alves & Victor Moutinho, 2013. "Decomposition analysis for energy-related CO2 emissions intensity over 1996-2009 in Portuguese Industrial Sectors," CEFAGE-UE Working Papers 2013_10, University of Evora, CEFAGE-UE (Portugal).
    7. Victor Moutinho & José Manuel Xavier & Pedro Miguel Silva, 2014. "Examining the energy-related CO2 emissions using Decomposition Approach in EU-15 before and after the Kyoto Protocol," CEFAGE-UE Working Papers 2014_17, University of Evora, CEFAGE-UE (Portugal).
    8. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    9. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
    10. Zhou, P. & Ang, B.W., 2008. "Decomposition of aggregate CO2 emissions: A production-theoretical approach," Energy Economics, Elsevier, vol. 30(3), pages 1054-1067, May.
    11. Diakoulaki, D. & Mandaraka, M., 2007. "Decomposition analysis for assessing the progress in decoupling industrial growth from CO2 emissions in the EU manufacturing sector," Energy Economics, Elsevier, vol. 29(4), pages 636-664, July.
    12. Ren, Shenggang & Hu, Zhen, 2012. "Effects of decoupling of carbon dioxide emission by Chinese nonferrous metals industry," Energy Policy, Elsevier, vol. 43(C), pages 407-414.
    13. Du, Kerui & Xie, Chunping & Ouyang, Xiaoling, 2017. "A comparison of carbon dioxide (CO2) emission trends among provinces in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 19-25.
    14. Xu, Jin-Hua & Fan, Ying & Yu, Song-Min, 2014. "Energy conservation and CO2 emission reduction in China's 11th Five-Year Plan: A performance evaluation," Energy Economics, Elsevier, vol. 46(C), pages 348-359.
    15. Zhang, Yue-Jun & Da, Ya-Bin, 2015. "The decomposition of energy-related carbon emission and its decoupling with economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1255-1266.
    16. Roinioti, Argiro & Koroneos, Christopher, 2017. "The decomposition of CO2 emissions from energy use in Greece before and during the economic crisis and their decoupling from economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 448-459.
    17. Hannah Förster & Katja Schumacher & Enrica De Cian & Michael Hübler & Ilkka Keppo & Silvana Mima & Ronald D. Sands, 2013. "European Energy Efficiency And Decarbonization Strategies Beyond 2030 — A Sectoral Multi-Model Decomposition," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-29.
    18. Oh, Ilyoung & Wehrmeyer, Walter & Mulugetta, Yacob, 2010. "Decomposition analysis and mitigation strategies of CO2 emissions from energy consumption in South Korea," Energy Policy, Elsevier, vol. 38(1), pages 364-377, January.
    19. Ma, Chunbo, 2010. "Account for sector heterogeneity in China's energy consumption: Sector price indices vs. GDP deflator," Energy Economics, Elsevier, vol. 32(1), pages 24-29, January.
    20. Åsa Löfgren & Adrian Muller, 2010. "Swedish CO 2 Emissions 1993–2006: An Application of Decomposition Analysis and Some Methodological Insights," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(2), pages 221-239, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:49:y:2015:i:c:p:638-645. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.