IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i9p3793-d354833.html
   My bibliography  Save this article

Evaluation of Industrial Urea Energy Consumption (EC) Based on Life Cycle Assessment (LCA)

Author

Listed:
  • Longyu Shi

    (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China)

  • Lingyu Liu

    (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Bin Yang

    (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    Guizhou Academy of Testing and Analysis, Guiyang 550002, China)

  • Gonghan Sheng

    (Faculty of Forestry, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada)

  • Tong Xu

    (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    Centre for Environment, Energy and Natural Resource Governance, Department of Land Economy, University of Cambridge, Cambridge CB2 3GZ, UK)

Abstract

With the increasingly prominent environmental problems and the decline of fossil fuel reserves, the reduction of energy consumption (EC) has become a common goal in the world. Urea industry is a typical energy-intensive chemical industry. However, studies just focus on the breakthrough of specific production technology or only consider the EC in the production stage. This results in a lack of evaluations of the life cycle of energy consumption (LcEC). In order to provide a systematic, scientific, and practical theoretical basis for the industrial upgrading and the energy transformation, LcEC of urea production and the greenhouse gas (GHG) emissions generated in the process of EC are studied in this paper. The results show that the average LcEC is about 30.1 GJ/t urea. The EC of the materials preparation stage, synthesis stage, and waste-treatment stage (EC RMP , EC PP , EC WD ) is about 0.388 GJ/t urea, 24.8 GJ/t urea, and 4.92 GJ/t urea, accounting for 1.3%, 82.4%, and 16.3% of LcEC, respectively. Thus, the synthesis stage is a dominant energy-consumer, in which 15.4 GJ/t urea of energy, accounting for 62.0% of EC pp , supports steam consumption. According to the energy distribution analysis, it can be concluded that coal presents the primary energy in the process of urea production, which supports 94.4% of LcEC. The proportion of coal consumption is significantly higher than that of the average of 59% in China. Besides, the GHG emissions in the synthesis stage are obviously larger than that in the other stage, with an average of 2.18 t eq.CO 2 /t urea, accounting for 81.3% of the life cycle of GHG (LcGHG) emissions. In detail, CO 2 is the dominant factor accounting for 90.0% of LcGHG emissions, followed by CH 4 , while N 2 O is negligible. Coal is the primary source of CO 2 emissions. The severe high proportion of coal consumption in the life cycle of urea production is responsible for this high CO 2 content of GHG emissions. Therefore, for industrial urea upgrading and energy transformation, reducing coal consumption will still be an important task for energy structure transformation. At the same time, the reformation of synthesis technologies, especially for steam energy-consuming technology, will mainly reduce the EC of the urea industry. Furthermore, the application of green energy will be conducive to a win-win situation for both economic and environmental benefits.

Suggested Citation

  • Longyu Shi & Lingyu Liu & Bin Yang & Gonghan Sheng & Tong Xu, 2020. "Evaluation of Industrial Urea Energy Consumption (EC) Based on Life Cycle Assessment (LCA)," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3793-:d:354833
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/9/3793/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/9/3793/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Panjeshahi, M.H. & Ghasemian Langeroudi, E. & Tahouni, N., 2008. "Retrofit of ammonia plant for improving energy efficiency," Energy, Elsevier, vol. 33(1), pages 46-64.
    2. Kirova-Yordanova, Zornitza, 2017. "Exergy-based estimation and comparison of urea and ammonium nitrate production efficiency and environmental impact," Energy, Elsevier, vol. 140(P1), pages 158-169.
    3. Malinauskaite, J. & Jouhara, H. & Ahmad, L. & Milani, M. & Montorsi, L. & Venturelli, M., 2019. "Energy efficiency in industry: EU and national policies in Italy and the UK," Energy, Elsevier, vol. 172(C), pages 255-269.
    4. Yi-Ming Wei & Hua Liao (ed.), 2016. "Energy Economics: Energy Efficiency in China," CEEP-BIT Books, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology, number b5, december.
    5. Ou, Xunmin & Xiaoyu, Yan & Zhang, Xiliang, 2011. "Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China," Applied Energy, Elsevier, vol. 88(1), pages 289-297, January.
    6. Xiang, Dong & Qian, Yu & Man, Yi & Yang, Siyu, 2014. "Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process," Applied Energy, Elsevier, vol. 113(C), pages 639-647.
    7. Lin, Yi-Pin & Wang, Wen-Hsian & Pan, Shu-Yuan & Ho, Chang-Ching & Hou, Chin-Jen & Chiang, Pen-Chi, 2016. "Environmental impacts and benefits of organic Rankine cycle power generation technology and wood pellet fuel exemplified by electric arc furnace steel industry," Applied Energy, Elsevier, vol. 183(C), pages 369-379.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valeria Medoro & Giacomo Ferretti & Giulio Galamini & Annalisa Rotondi & Lucia Morrone & Barbara Faccini & Massimo Coltorti, 2022. "Reducing Nitrogen Fertilization in Olive Growing by the Use of Natural Chabazite-Zeolitite as Soil Improver," Land, MDPI, vol. 11(9), pages 1-20, September.
    2. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    2. Zhou, Huairong & Qian, Yu & Kraslawski, Andrzej & Yang, Qingchun & Yang, Siyu, 2017. "Life-cycle assessment of alternative liquid fuels production in China," Energy, Elsevier, vol. 139(C), pages 507-522.
    3. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    4. Ünal, Berat Berkan & Onaygil, Sermin & Acuner, Ebru & Cin, Rabia, 2022. "Application of energy efficiency obligation scheme for electricity distribution companies in Turkey," Energy Policy, Elsevier, vol. 163(C).
    5. Babras Khan & Man-Hoe Kim, 2022. "Energy and Exergy Analyses of a Novel Combined Heat and Power System Operated by a Recuperative Organic Rankine Cycle Integrated with a Water Heating System," Energies, MDPI, vol. 15(18), pages 1-19, September.
    6. Andreoni, Valeria, 2020. "The energy metabolism of countries: Energy efficiency and use in the period that followed the global financial crisis," Energy Policy, Elsevier, vol. 139(C).
    7. Rochedo, Pedro R.R. & Szklo, Alexandre, 2013. "Designing learning curves for carbon capture based on chemical absorption according to the minimum work of separation," Applied Energy, Elsevier, vol. 108(C), pages 383-391.
    8. Wang, Kai-Hua & Su, Chi-Wei & Lobonţ, Oana-Ramona & Umar, Muhammad, 2021. "Whether crude oil dependence and CO2 emissions influence military expenditure in net oil importing countries?," Energy Policy, Elsevier, vol. 153(C).
    9. Yang, Yunpeng & Yang, Weixin & Chen, Hongmin & Li, Yin, 2020. "China’s energy whistleblowing and energy supervision policy: An evolutionary game perspective," Energy, Elsevier, vol. 213(C).
    10. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    11. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    12. Prokop, Viktor & Gerstlberger, Wolfgang & Zapletal, David & Gyamfi, Solomon, 2023. "Do we need human capital heterogeneity for energy efficiency and innovativeness? Insights from European catching-up territories," Energy Policy, Elsevier, vol. 177(C).
    13. Zhang, Zhiqing & Dong, Rui & Tan, Dongli & Duan, Lin & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Hu, Jingyi & Zhang, Jian & Zhong, Weihuang & Zhao, Ziheng, 2023. "Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis," Energy, Elsevier, vol. 271(C).
    14. Wojciech Chmielewski & Marta Postuła & Przemysław Dubel, 2023. "The Impact of Expenditure on Research and Development on Selected Energy Factors in the European Union," Energies, MDPI, vol. 16(8), pages 1-18, April.
    15. Michalsky, Ronald & Parman, Bryon J. & Amanor-Boadu, Vincent & Pfromm, Peter H., 2012. "Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses," Energy, Elsevier, vol. 42(1), pages 251-260.
    16. Chen, Wei-Hsin & Tsai, Ming-Hang & Hung, Chen-I, 2013. "Numerical prediction of CO2 capture process by a single droplet in alkaline spray," Applied Energy, Elsevier, vol. 109(C), pages 125-134.
    17. Wang, Xuewei & Wang, Jing & Wang, Lin & Yuan, Ruiming, 2019. "Non-overlapping moving compressive measurement algorithm for electrical energy estimation of distorted m-sequence dynamic test signal," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I, 2011. "A theoretical analysis of the capture of greenhouse gases by single water droplet at atmospheric and elevated pressures," Applied Energy, Elsevier, vol. 88(12), pages 5120-5130.
    19. Liyan Feng & Jun Zhai & Lei Chen & Wuqiang Long & Jiangping Tian & Bin Tang, 2017. "Increasing the application of gas engines to decrease China’s GHG emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(6), pages 839-861, August.
    20. Bahman Huseynli, 2023. "Effect of Exports of Goods and Services and Energy Consumption in Italy`s Service Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 254-261, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3793-:d:354833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.