IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!)

Citations for "Addendum: Regularization and variable selection via the elastic net"

by Hui Zou & Trevor Hastie

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Xing, Xin & Hu, Jinjin & Yang, Yaning, 2014. "Robust minimum variance portfolio with L-infinity constraints," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 107-117.
  2. Wang, Siyang & Cui, Hengjian, 2015. "A new test for part of high dimensional regression coefficients," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 187-203.
  3. Shi, Minghui & Dunson, David B., 2011. "Bayesian variable selection via particle stochastic search," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 283-291, February.
  4. Gerda Claeskens, 2012. "Focused estimation and model averaging with penalization methods: an overview," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(3), pages 272-287, 08.
  5. Wang, Tao & Zhu, Lixing, 2011. "Consistent tuning parameter selection in high dimensional sparse linear regression," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1141-1151, August.
  6. Marie Bessec, 2013. "Short‐Term Forecasts of French GDP: A Dynamic Factor Model with Targeted Predictors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 500-511, 09.
  7. Bergersen, Linn Cecilie & Tharmaratnam, Kukatharmini & Glad, Ingrid K., 2014. "Monotone splines lasso," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 336-351.
  8. Monica Billio & Roberto Casarin & Luca Rossini, 2016. "Bayesian nonparametric sparse seemingly unrelated regression model (SUR)," Working Papers 2016:20, Department of Economics, University of Venice "Ca' Foscari".
  9. Schumacher, Christian, 2009. "Factor forecasting using international targeted predictors: the case of German GDP," Discussion Paper Series 1: Economic Studies 2009,10, Deutsche Bundesbank, Research Centre.
  10. Nott, David J. & Leng, Chenlei, 2010. "Bayesian projection approaches to variable selection in generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3227-3241, December.
  11. Liu, Yufeng & Helen Zhang, Hao & Park, Cheolwoo & Ahn, Jeongyoun, 2007. "Support vector machines with adaptive Lq penalty," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6380-6394, August.
  12. Ma, Shaohui & Fildes, Robert & Huang, Tao, 2016. "Demand forecasting with high dimensional data: The case of SKU retail sales forecasting with intra- and inter-category promotional information," European Journal of Operational Research, Elsevier, vol. 249(1), pages 245-257.
  13. Adam Nowak & Patrick Smith, 2015. "Textual Analysis in Real Estate," Working Papers 15-34, Department of Economics, West Virginia University.
  14. Latouche, Pierre & Mattei, Pierre-Alexandre & Bouveyron, Charles & Chiquet, Julien, 2016. "Combining a relaxed EM algorithm with Occam’s razor for Bayesian variable selection in high-dimensional regression," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 177-190.
  15. Alec Smith & B. Douglas Bernheim & Colin F. Camerer & Antonio Rangel, 2014. "Neural Activity Reveals Preferences without Choices," American Economic Journal: Microeconomics, American Economic Association, vol. 6(2), pages 1-36, May.
  16. Ard Reijer, 2013. "Forecasting Dutch GDP and inflation using alternative factor model specifications based on large and small datasets," Empirical Economics, Springer, vol. 44(2), pages 435-453, April.
  17. Nott, David J., 2008. "Predictive performance of Dirichlet process shrinkage methods in linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3658-3669, March.
  18. Hidetoshi Matsui & Toshihiro Misumi, 2015. "Variable selection for varying-coefficient models with the sparse regularization," Computational Statistics, Springer, vol. 30(1), pages 43-55, March.
  19. Kascha, Christian & Trenkler, Carsten, 2015. "Forecasting VARs, model selection, and shrinkage," Working Papers 15-07, University of Mannheim, Department of Economics.
  20. Mandal, B.N. & Ma, Jun, 2016. "l1 regularized multiplicative iterative path algorithm for non-negative generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 289-299.
  21. Cai, Jia & Xiang, Dao-Hong, 2016. "Statistical consistency of coefficient-based conditional quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 1-12.
  22. Roberts, S. & Nowak, G., 2014. "Stabilizing the lasso against cross-validation variability," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 198-211.
  23. Jan Jacobs & Pieter Otter & Ard den Reijer, 2007. "Information, data dimension and factor structure," DNB Working Papers 150, Netherlands Central Bank, Research Department.
  24. Sandra Eickmeier & Tim Ng, 2009. "Forecasting national activity using lots of international predictors: an application to New Zealand," Reserve Bank of New Zealand Discussion Paper Series DP2009/04, Reserve Bank of New Zealand.
  25. Brendan P. W. Ames & Mingyi Hong, 2016. "Alternating direction method of multipliers for penalized zero-variance discriminant analysis," Computational Optimization and Applications, Springer, vol. 64(3), pages 725-754, July.
  26. Wang, Tao & Zhu, Lixing, 2013. "Sparse sufficient dimension reduction using optimal scoring," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 223-232.
  27. KOROBILIS, Dimitris, 2011. "Hierarchical shrinkage priors for dynamic regressions with many predictors," CORE Discussion Papers 2011021, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  28. Fan, Yali & Qin, Guoyou & Zhu, Zhongyi, 2012. "Variable selection in robust regression models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 156-167.
  29. Lian, Heng, 2012. "Shrinkage estimation for identification of linear components in additive models," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 225-231.
  30. Vasilios Plakandaras & Rangan Gupta & Periklis Gogas & Theophilos Papadimitriou, 2014. "Forecasting the U.S. Real House Price Index," Working Paper Series 30_14, The Rimini Centre for Economic Analysis.
  31. Matthias Weber & Martin Schumacher & Harald Binder, 2014. "Regularized Regression Incorporating Network Information: Simultaneous Estimation of Covariate Coefficients and Connection Signs," Tinbergen Institute Discussion Papers 14-089/I, Tinbergen Institute.
  32. Blommaert, A. & Hens, N. & Beutels, Ph., 2014. "Data mining for longitudinal data under multicollinearity and time dependence using penalized generalized estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 667-680.
  33. Roberto Casarin & Daniel Felix Ahelegbey & Monica Billio, 2014. "Sparse Graphical Vector Autoregression: A Bayesian Approach," Working Papers 2014:29, Department of Economics, University of Venice "Ca' Foscari".
  34. Shutes, Karl & Adcock, Chris, 2013. "Regularized Skew-Normal Regression," MPRA Paper 52217, University Library of Munich, Germany, revised 11 Dec 2013.
  35. International Monetary Fund., 2016. "United Kingdom; Financial Sector Assessment Program-Systemic Risk and Interconnectedness Analysis-Technical Note," IMF Staff Country Reports 16/164, International Monetary Fund.
  36. Candelon Bertrand & Hurlin Christophe & Tokpavi Sessi, 2011. "Sampling Error and Double Shrinkage Estimation of Minimum Variance Portfolios," Research Memorandum 002, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  37. Hongjin He & Xingju Cai & Deren Han, 2015. "A fast splitting method tailored for Dantzig selector," Computational Optimization and Applications, Springer, vol. 62(2), pages 347-372, November.
  38. Mielniczuk, Jan & Teisseyre, Paweł, 2014. "Using random subspace method for prediction and variable importance assessment in linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 725-742.
  39. Chalise, Prabhakar & Fridley, Brooke L., 2012. "Comparison of penalty functions for sparse canonical correlation analysis," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 245-254.
  40. McCann, Lauren & Welsch, Roy E., 2007. "Robust variable selection using least angle regression and elemental set sampling," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 249-257, September.
  41. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
  42. Li, Gaorong & Lian, Heng & Feng, Sanying & Zhu, Lixing, 2013. "Automatic variable selection for longitudinal generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 174-186.
  43. Yang, Hu & Yi, Danhui, 2015. "Studies of the adaptive network-constrained linear regression and its application," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 40-52.
  44. repec:dau:papers:123456789/10079 is not listed on IDEAS
  45. Daye, Z. John & Jeng, X. Jessie, 2009. "Shrinkage and model selection with correlated variables via weighted fusion," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1284-1298, February.
  46. Malefaki, Valia, 2015. "On Flexible Linear Factor Stochastic Volatility Models," MPRA Paper 62216, University Library of Munich, Germany.
  47. Joscha Beckmann & Rainer Schüssler, 2014. "Forecasting Exchange Rates under Model and Parameter Uncertainty," CQE Working Papers 3214, Center for Quantitative Economics (CQE), University of Muenster.
  48. Oliver J. Rutz & Michael Trusov & Randolph E. Bucklin, 2011. "Modeling Indirect Effects of Paid Search Advertising: Which Keywords Lead to More Future Visits?," Marketing Science, INFORMS, vol. 30(4), pages 646-665, July.
  49. Hyun Hak Kim & Norman Swanson, 2013. "Mining Big Data Using Parsimonious Factor and Shrinkage Methods," Departmental Working Papers 201316, Rutgers University, Department of Economics.
  50. Mai, Qing & Zou, Hui, 2015. "Sparse semiparametric discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 175-188.
  51. Zhou, Ding-Xuan, 2013. "On grouping effect of elastic net," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2108-2112.
  52. McKay Curtis, S. & Banerjee, Sayantan & Ghosal, Subhashis, 2014. "Fast Bayesian model assessment for nonparametric additive regression," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 347-358.
  53. Menon, Aditya Krishna & Cai, Chen & Wang, Weihong & Wen, Tao & Chen, Fang, 2015. "Fine-grained OD estimation with automated zoning and sparsity regularisation," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 150-172.
  54. Zhang, Yan-Qing & Tian, Guo-Liang & Tang, Nian-Sheng, 2016. "Latent variable selection in structural equation models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 190-205.
  55. Fan, Jianqing & Liao, Yuan, 2012. "Endogeneity in ultrahigh dimension," MPRA Paper 38698, University Library of Munich, Germany.
  56. K. Kampa & S. Mehta & C. Chou & W. Chaovalitwongse & T. Grabowski, 2014. "Sparse optimization in feature selection: application in neuroimaging," Journal of Global Optimization, Springer, vol. 59(2), pages 439-457, July.
  57. Mariusz Kubus, 2016. "Locally Regularized Linear Regression in the Valuation of Real Estate," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 17(3), pages 515-524, September.
  58. Daeju Kim & Shuichi Kawano & Yoshiyuki Ninomiya, 2014. "Adaptive basis expansion via $$\ell _1$$ ℓ 1 trend filtering," Computational Statistics, Springer, vol. 29(5), pages 1005-1023, October.
  59. Zuber Verena & Strimmer Korbinian, 2011. "High-Dimensional Regression and Variable Selection Using CAR Scores," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-27, July.
  60. Baragatti, M. & Pommeret, D., 2012. "A study of variable selection using g-prior distribution with ridge parameter," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1920-1934.
  61. Hirose, Kei & Tateishi, Shohei & Konishi, Sadanori, 2013. "Tuning parameter selection in sparse regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 28-40.
  62. Felix Abramovich & Vadim Grinshtein, 2013. "Estimation of a sparse group of sparse vectors," Biometrika, Biometrika Trust, vol. 100(2), pages 355-370.
  63. Florian Ziel, 2015. "Iteratively reweighted adaptive lasso for conditional heteroscedastic time series with applications to AR-ARCH type processes," Papers 1502.06557, arXiv.org, revised Dec 2015.
  64. Wang, Huiqiang, 2016. "Estimating the health impacts of food safety interventions: Optimal counterfactual selections via information criteria in small samples," Food Policy, Elsevier, vol. 63(C), pages 44-52.
  65. Jiahan Li & Ilias Tsiakas & Wei Wang, 2014. "Predicting Exchange Rates Out of Sample: Can Economic Fundamentals Beat the Random Walk?," Working Paper Series 05_14, The Rimini Centre for Economic Analysis.
  66. Wang, Xiaoming & Park, Taesung & Carriere, K.C., 2010. "Variable selection via combined penalization for high-dimensional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(10), pages 2230-2243, October.
  67. Chudik, Alexander & Kapetanios, George & Pesaran, M. Hashem, 2016. "A one-covariate at a time, multiple testing approach to variable selection in high-dimensional linear regression models," Globalization and Monetary Policy Institute Working Paper 290, Federal Reserve Bank of Dallas.
  68. Elliott, Graham & Timmermann, Allan G, 2016. "Forecasting in Economics and Finance," CEPR Discussion Papers 11354, C.E.P.R. Discussion Papers.
  69. Martinez Josue G. & Carroll Raymond J & Muller Samuel & Sampson Joshua N. & Chatterjee Nilanjan, 2010. "A Note on the Effect on Power of Score Tests via Dimension Reduction by Penalized Regression under the Null," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-14, March.
  70. Wolfgang Karl Härdle & Dedy Dwi Prastyo, 2013. "Default Risk Calculation based on Predictor Selection for the Southeast Asian Industry," SFB 649 Discussion Papers SFB649DP2013-037, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  71. Hsu, David, 2015. "Identifying key variables and interactions in statistical models of building energy consumption using regularization," Energy, Elsevier, vol. 83(C), pages 144-155.
  72. Seema Narayan & Russell Smyth, 2015. "The Financial Econometrics of Price Discovery and Predictability," Monash Economics Working Papers 06-15, Monash University, Department of Economics.
  73. Xue-Jun Ma & Jing-Xiao Zhang, 2016. "A new variable selection approach for varying coefficient models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(1), pages 59-72, January.
  74. Krüger, Jens J. & Rhiel, Mathias, 2016. "Determinants of ICT infrastructure: A cross-country statistical analysis," Darmstadt Discussion Papers in Economics 228, Darmstadt University of Technology, Department of Law and Economics.
  75. Daniel Ambach & Carsten Croonenbroeck, 2016. "Space-time short- to medium-term wind speed forecasting," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 5-20, March.
  76. Victor Chernozhukov & Christian Hansen & Yuan Liao, 2015. "A lava attack on the recovery of sums of dense and sparse signals," CeMMAP working papers CWP05/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  77. Lykou, Anastasia & Whittaker, Joe, 2010. "Sparse CCA using a Lasso with positivity constraints," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3144-3157, December.
  78. Wang, Qin & Yin, Xiangrong, 2008. "A nonlinear multi-dimensional variable selection method for high dimensional data: Sparse MAVE," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4512-4520, May.
  79. Tian, Tian Siva & James, Gareth M., 2013. "Interpretable dimension reduction for classifying functional data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 282-296.
  80. Brian Chi-ang Lin & Siqi Zheng & Felix Pretis & Lea Schneider & Jason E. Smerdon & David F. Hendry, 2016. "Detecting Volcanic Eruptions In Temperature Reconstructions By Designed Break-Indicator Saturation," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 403-429, 07.
  81. Wang Zhu & Wang C.Y., 2010. "Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-33, June.
  82. Tomáš Bunčák, 2016. "Exchange Rates Forecasting: Can Jump Models Combined with Macroeconomic Fundamentals Help?," Prague Economic Papers, University of Economics, Prague, vol. 2016(5), pages 527-546.
  83. Xue-Jun Ma & Jing-Xiao Zhang, 2016. "A new variable selection approach for varying coefficient models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(1), pages 59-72, January.
  84. Boriss Siliverstovs, 2015. "Dissecting the Purchasing Managers’ Index: Are all relevant components included? Are all included components relevant?," KOF Working papers 15-376, KOF Swiss Economic Institute, ETH Zurich.
  85. Feng Li & Lu Lin & Yuxia Su, 2013. "Variable selection and parameter estimation for partially linear models via Dantzig selector," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 225-238, February.
  86. Caiya Zhang & Yanbiao Xiang, 2016. "On the oracle property of adaptive group Lasso in high-dimensional linear models," Statistical Papers, Springer, vol. 57(1), pages 249-265, March.
  87. Kawano, Shuichi & Fujisawa, Hironori & Takada, Toyoyuki & Shiroishi, Toshihiko, 2015. "Sparse principal component regression with adaptive loading," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 192-203.
  88. Charles Bouveyron & Camille Brunet-Saumard, 2014. "Discriminative variable selection for clustering with the sparse Fisher-EM algorithm," Computational Statistics, Springer, vol. 29(3), pages 489-513, June.
  89. Fabio Caccioli & Imre Kondor & Matteo Marsili & Susanne Still, 2016. "Liquidity Risk And Instabilities In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 01-28.
  90. Zhang, Bo & Chen, G.Q. & Xia, X.H. & Li, S.C. & Chen, Z.M. & Ji, Xi, 2012. "Environmental emissions by Chinese industry: Exergy-based unifying assessment," Energy Policy, Elsevier, vol. 45(C), pages 490-501.
  91. Kim, Hyun Hak & Swanson, Norman R., 2014. "Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence," Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
  92. Yongjin Li & Qingzhao Zhang & Qihua Wang, 2017. "Penalized estimation equation for an extended single-index model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 169-187, February.
  93. Jiang, Liewen & Bondell, Howard D. & Wang, Huixia Judy, 2014. "Interquantile shrinkage and variable selection in quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 208-219.
  94. Wang, Mingqiu & Song, Lixin & Wang, Xiaoguang, 2010. "Bridge estimation for generalized linear models with a diverging number of parameters," Statistics & Probability Letters, Elsevier, vol. 80(21-22), pages 1584-1596, November.
  95. Ueki, Masao & Kawasaki, Yoshinori, 2013. "Multiple choice from competing regression models under multicollinearity based on standardized update," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 31-41.
  96. Beckmann, Joscha & Schüssler, Rainer, 2016. "Forecasting exchange rates under parameter and model uncertainty," Journal of International Money and Finance, Elsevier, vol. 60(C), pages 267-288.
  97. Hood, Rick & Grant, Robert & Jones, Ray & Goldacre, Allie, 2016. "A study of performance indicators and Ofsted ratings in English child protection services," Children and Youth Services Review, Elsevier, vol. 67(C), pages 50-56.
  98. Yen-Shiu Chin & Ting-Li Chen, 2016. "Minimizing variable selection criteria by Markov chain Monte Carlo," Computational Statistics, Springer, vol. 31(4), pages 1263-1286, December.
  99. Chen, Jiaqi & Tindall, Michael, 2016. "The Chen-Tindall system and the lasso operator: improving automatic model performance," Occasional Papers 16-1, Federal Reserve Bank of Dallas.
  100. Peter Bühlmann, 2013. "Causal statistical inference in high dimensions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 357-370, June.
  101. Philip Kostov & Thankom Arun & Samuel Annim, 2014. "Financial Services to the Unbanked: the case of the Mzansi intervention in South Africa," Contemporary Economics, University of Finance and Management in Warsaw, vol. 8(2), pages -, June.
  102. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
  103. She, Yiyuan, 2012. "An iterative algorithm for fitting nonconvex penalized generalized linear models with grouped predictors," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2976-2990.
  104. Lee, Seokho & Huang, Jianhua Z., 2013. "A coordinate descent MM algorithm for fast computation of sparse logistic PCA," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 26-38.
  105. Xia, X.H. & Huang, G.T. & Chen, G.Q. & Zhang, Bo & Chen, Z.M. & Yang, Q., 2011. "Energy security, efficiency and carbon emission of Chinese industry," Energy Policy, Elsevier, vol. 39(6), pages 3520-3528, June.
  106. van Wieringen, Wessel N. & Kun, David & Hampel, Regina & Boulesteix, Anne-Laure, 2009. "Survival prediction using gene expression data: A review and comparison," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1590-1603, March.
  107. Ruggieri, Eric & Lawrence, Charles E., 2012. "On efficient calculations for Bayesian variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1319-1332.
  108. Patric Müller & Sara Geer, 2016. "Censored linear model in high dimensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 75-92, March.
  109. Moharil Janhavi & May Paul & Gaile Daniel P. & Blair Rachael Hageman, 2016. "Belief propagation in genotype-phenotype networks," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(1), pages 39-53, March.
  110. A. Chudik & G. Kapetanios & M. Hashem Pesaran, 2016. "Big Data Analytics: A New Perspective," Cambridge Working Papers in Economics 1611, Faculty of Economics, University of Cambridge.
  111. Ziel, Florian, 2016. "Iteratively reweighted adaptive lasso for conditional heteroscedastic time series with applications to AR–ARCH type processes," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 773-793.
  112. Jiahan Li & Ilias Tsiakas, 2016. "Equity Premium Prediction: The Role of Economic and Statistical Constraints," Working Paper Series 16-25, The Rimini Centre for Economic Analysis.
  113. Huang, Qiming & Zhu, Yu, 2016. "Model-free sure screening via maximum correlation," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 89-106.
  114. Yao, Weixin & Wang, Qin, 2013. "Robust variable selection through MAVE," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 42-49.
  115. Li Shaoyu & Lu Qing & Fu Wenjiang & Romero Roberto & Cui Yuehua, 2009. "A Regularized Regression Approach for Dissecting Genetic Conflicts that Increase Disease Risk in Pregnancy," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-28, October.
  116. Michoel, Tom, 2016. "Natural coordinate descent algorithm for L1-penalised regression in generalised linear models," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 60-70.
  117. Shutes, Karl & Adcock, Chris, 2013. "Regularized Extended Skew-Normal Regression," MPRA Paper 58445, University Library of Munich, Germany, revised 09 Sep 2014.
  118. Mingkun Chen & Evelyne Vigneau, 2016. "Supervised clustering of variables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(1), pages 85-101, March.
  119. Tutz, Gerhard & Binder, Harald, 2007. "Boosting ridge regression," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6044-6059, August.
  120. Mehmet Caner & Anders Bredahl Kock, 2013. "Oracle Inequalities for Convex Loss Functions with Non-Linear Targets," CREATES Research Papers 2013-51, Department of Economics and Business Economics, Aarhus University.
  121. Zhou, Jingke & Zhu, Lixing, 2016. "Principal minimax support vector machine for sufficient dimension reduction with contaminated data," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 33-48.
  122. Stefan Kerbl & Michael Sigmund, 2011. "What Drives Aggregate Credit Risk?," Financial Stability Report, Oesterreichische Nationalbank (Austrian Central Bank), issue 22, pages 72-87.
  123. Changrong Yan & Dixin Zhang, 2013. "Sparse dimension reduction for survival data," Computational Statistics, Springer, vol. 28(4), pages 1835-1852, August.
  124. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
  125. Abdallah Mkhadri & Mohamed Ouhourane, 2015. "A group VISA algorithm for variable selection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 41-60, March.
  126. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
  127. Lee, Youngjo & Oh, Hee-Seok, 2014. "A new sparse variable selection via random-effect model," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 89-99.
  128. Christophe Piette, 2016. "Predicting Belgium’s GDP using targeted bridge models," Working Paper Research 290, National Bank of Belgium.
  129. Enis Kayış & Taghi Khaniyev & Jaap Suermondt & Karl Sylvester, 2015. "A robust estimation model for surgery durations with temporal, operational, and surgery team effects," Health Care Management Science, Springer, vol. 18(3), pages 222-233, September.
  130. Boriss Siliverstovs, 2015. "Short-term forecasting with mixed-frequency data: A MIDASSO approach," KOF Working papers 15-375, KOF Swiss Economic Institute, ETH Zurich.
  131. Li, Jiahan & Chen, Weiye, 2014. "Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 996-1015.
  132. Xu, Qifa & Zhou, Yingying & Jiang, Cuixia & Yu, Keming & Niu, Xufeng, 2016. "A large CVaR-based portfolio selection model with weight constraints," Economic Modelling, Elsevier, vol. 59(C), pages 436-447.
  133. Kwon, Sunghoon & Oh, Seungyoung & Lee, Youngjo, 2016. "The use of random-effect models for high-dimensional variable selection problems," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 401-412.
  134. Stephanie Möst & Wolfgang Pößnecker & Gerhard Tutz, 2016. "Variable selection for discrete competing risks models," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(4), pages 1589-1610, July.
  135. Panopoulou, Ekaterini & Vrontos, Spyridon, 2015. "Hedge fund return predictability; To combine forecasts or combine information?," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 103-122.
  136. Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013. "Complete subset regressions," Journal of Econometrics, Elsevier, vol. 177(2), pages 357-373.
  137. Gefang, Deborah, 2014. "Bayesian doubly adaptive elastic-net Lasso for VAR shrinkage," International Journal of Forecasting, Elsevier, vol. 30(1), pages 1-11.
  138. Luo, Ruiyan & Qi, Xin, 2015. "Sparse wavelet regression with multiple predictive curves," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 33-49.
  139. Lin, Huazhen & Peng, Heng, 2013. "Smoothed rank correlation of the linear transformation regression model," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 615-630.
  140. Aggarwal, S.K. & Saini, L.M., 2014. "Solar energy prediction using linear and non-linear regularization models: A study on AMS (American Meteorological Society) 2013–14 Solar Energy Prediction Contest," Energy, Elsevier, vol. 78(C), pages 247-256.
  141. Julius Stakenas, 2012. "Generating short-term forecasts of the Lithuanian GDP using factor models," Bank of Lithuania Working Paper Series 13, Bank of Lithuania.
  142. Chakraborty, Sounak, 2009. "Bayesian binary kernel probit model for microarray based cancer classification and gene selection," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4198-4209, October.
  143. Huang, Zhensheng & Pang, Zhen & Lin, Bingqing & Shao, Quanxi, 2014. "Model structure selection in single-index-coefficient regression models," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 159-175.
  144. Marcelo C. Medeiros & Eduardo F. Mendes, 2015. "l1-Regularization of High-Dimensional Time-Series Models with Flexible Innovations," Textos para discussão 636, Department of Economics PUC-Rio (Brazil).
  145. Rohart, Florian & San Cristobal, Magali & Laurent, Béatrice, 2014. "Selection of fixed effects in high dimensional linear mixed models using a multicycle ECM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 209-222.
  146. Snezhana Gocheva-Ilieva & Iliycho Iliev, 2016. "Using Generalized PathSeeker Regularized Regression for Modeling and Prediction of Output Power of CuBr Laser," Proceedings of International Academic Conferences 4006523, International Institute of Social and Economic Sciences.
  147. Korzeń, M. & Jaroszewicz, S. & Klęsk, P., 2013. "Logistic regression with weight grouping priors," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 281-298.
  148. Engler David & Li Yi, 2009. "Survival Analysis with High-Dimensional Covariates: An Application in Microarray Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-22, February.
  149. repec:prg:jnlpep:v:preprint:id:581:p:1-20 is not listed on IDEAS
  150. Luca Greco & Alessio Farcomeni, 2016. "A plug-in approach to sparse and robust principal component analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 449-481, September.
  151. Shen, Haipeng & Huang, Jianhua Z., 2008. "Sparse principal component analysis via regularized low rank matrix approximation," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1015-1034, July.
  152. Yoonseok Lee & Mehmet Caner & Xu Han, 2015. "Adaptive Elastic Net GMM Estimation with Many Invalid Moment Conditions: Simultaneous Model and Moment Selection," Center for Policy Research Working Papers 177, Center for Policy Research, Maxwell School, Syracuse University.
  153. W. Braun, 2015. "Visualization of evidence in regression with the QR decomposition," Computational Statistics, Springer, vol. 30(4), pages 907-927, December.
  154. Huang, Lele & Zhao, Junlong & Wang, Huiwen & Wang, Siyang, 2016. "Robust shrinkage estimation and selection for functional multiple linear model through LAD loss," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 384-400.
  155. Chakraborty, Sounak & Guo, Ruixin, 2011. "A Bayesian hybrid Huberized support vector machine and its applications in high-dimensional medical data," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1342-1356, March.
  156. Geeven Geert & van der Laan Mark J. & de Gunst Mathisca C.M., 2012. "Comparison of Targeted Maximum Likelihood and Shrinkage Estimators of Parameters in Gene Networks," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(5), pages 1-29, September.
  157. Hu, Qinqin & Zeng, Peng & Lin, Lu, 2015. "The dual and degrees of freedom of linearly constrained generalized lasso," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 13-26.
  158. Sandra Stankiewicz, 2015. "Forecasting Euro Area Macroeconomic Variables with Bayesian Adaptive Elastic Net," Working Paper Series of the Department of Economics, University of Konstanz 2015-12, Department of Economics, University of Konstanz.
  159. Xiang-Jie Li & Xue-Jun Ma & Jing-Xiao Zhang, 2017. "Robust feature screening for varying coefficient models via quantile partial correlation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 17-49, January.
  160. Charbonnier Camille & Chiquet Julien & Ambroise Christophe, 2010. "Weighted-LASSO for Structured Network Inference from Time Course Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-29, February.
  161. Matsui, Hidetoshi, 2014. "Variable and boundary selection for functional data via multiclass logistic regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 176-185.
  162. Bulligan, Guido & Marcellino, Massimiliano & Venditti, Fabrizio, 2015. "Forecasting economic activity with targeted predictors," International Journal of Forecasting, Elsevier, vol. 31(1), pages 188-206.
  163. Friedman, Jerome H., 2012. "Fast sparse regression and classification," International Journal of Forecasting, Elsevier, vol. 28(3), pages 722-738.
  164. Paweł Teisseyre & Robert A. Kłopotek & Jan Mielniczuk, 2016. "Random Subspace Method for high-dimensional regression with the R package regRSM," Computational Statistics, Springer, vol. 31(3), pages 943-972, September.
  165. Michael Schomaker, 2012. "Shrinkage averaging estimation," Statistical Papers, Springer, vol. 53(4), pages 1015-1034, November.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.