IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0204547.html
   My bibliography  Save this article

Dynamics of collective performance in collaboration networks

Author

Listed:
  • Victor Amelkin
  • Omid Askarisichani
  • Young Ji Kim
  • Thomas W Malone
  • Ambuj K Singh

Abstract

Today, many complex tasks are assigned to teams, rather than individuals. One reason for teaming up is expansion of the skill coverage of each individual to the joint team skill set. However, numerous empirical studies of human groups suggest that the performance of equally skilled teams can widely differ. Two natural question arise: What are the factors defining team performance? and How can we best predict the performance of a given team on a specific task? While the team members’ task-related capabilities constrain the potential for the team’s success, the key to understanding team performance is in the analysis of the team process, encompassing the behaviors of the team members during task completion. In this study, we extend the existing body of research on team process and prediction models of team performance. Specifically, we analyze the dynamics of historical team performance over a series of tasks as well as the fine-grained patterns of collaboration between team members, and formally connect these dynamics to the team performance in the predictive models. Our major qualitative finding is that higher performing teams have well-connected collaboration networks—as indicated by the topological and spectral properties of the latter—which are more robust to perturbations, and where network processes spread more efficiently. Our major quantitative finding is that our predictive models deliver accurate team performance predictions—with a prediction error of 15-25%—on a variety of simple tasks, outperforming baseline models that do not capture the micro-level dynamics of team member behaviors. We also show how to use our models in an application, for optimal online planning of workload distribution in an organization. Our findings emphasize the importance of studying the dynamics of team collaboration as the major driver of high performance in teams.

Suggested Citation

  • Victor Amelkin & Omid Askarisichani & Young Ji Kim & Thomas W Malone & Ambuj K Singh, 2018. "Dynamics of collective performance in collaboration networks," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-31, October.
  • Handle: RePEc:plo:pone00:0204547
    DOI: 10.1371/journal.pone.0204547
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204547
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0204547&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0204547?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Morten T. Hansen, 2002. "Knowledge Networks: Explaining Effective Knowledge Sharing in Multiunit Companies," Organization Science, INFORMS, vol. 13(3), pages 232-248, June.
    2. David Engel & Anita Williams Woolley & Lisa X Jing & Christopher F Chabris & Thomas W Malone, 2014. "Reading the Mind in the Eyes or Reading between the Lines? Theory of Mind Predicts Collective Intelligence Equally Well Online and Face-To-Face," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-16, December.
    3. Mott Greene, 2007. "The demise of the lone author," Nature, Nature, vol. 450(7173), pages 1165-1165, December.
    4. Kyle Lewis & Benjamin Herndon, 2011. "Transactive Memory Systems: Current Issues and Future Research Directions," Organization Science, INFORMS, vol. 22(5), pages 1254-1265, October.
    5. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    6. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aisha J Ali & Javier Fuenzalida & Margarita Gómez & Martin J Williams, 2021. "Four lenses on people management in the public sector: an evidence review and synthesis," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 37(2), pages 335-366.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    3. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    4. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    5. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    6. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    7. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    8. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    9. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    10. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    11. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    12. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    13. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.
    14. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    15. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    16. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    17. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    18. Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.
    19. Jung, Yoon Mo & Whang, Joyce Jiyoung & Yun, Sangwoon, 2020. "Sparse probabilistic K-means," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    20. Changrong Yan & Dixin Zhang, 2013. "Sparse dimension reduction for survival data," Computational Statistics, Springer, vol. 28(4), pages 1835-1852, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0204547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.