IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v29y2024i4d10.1007_s13253-023-00591-w.html
   My bibliography  Save this article

Two Gaussian Regularization Methods for Time-Varying Networks

Author

Listed:
  • Jie Jian

    (University of Waterloo)

  • Peijun Sang

    (University of Waterloo)

  • Mu Zhu

    (University of Waterloo)

Abstract

We model time-varying network data as realizations from multivariate Gaussian distributions with precision matrices that change over time. To facilitate parameter estimation, we require not only that each precision matrix at any given time point be sparse, but also that precision matrices at neighboring time points be similar. We accomplish this with two different algorithms, by generalizing the elastic net and the fused LASSO, respectively. While similar approaches in the literature for modeling time-varying networks have predominantly extended the graphical LASSO of Friedman et al. (Biostatistics 9(3):432-441, 2008), we extend the regression approach of Meinshausen and Bühlmann (Ann Stat 34(3):1436–1462, 2006) and subsequently of Peng et al. (J Am Stat Assoc 104(486):735–746, 2009). This allows us to explicitly focus on and work with the partial correlation coefficients, which are more directly meaningful and interpretable parameters for the biological sciences. We develop efficient algorithms and convenient degree-of-freedom formulae for choosing tuning parameters. The proposed methods are demonstrated through simulation studies. By applying them to an hourly temperature dataset, we detect interesting time-varying connectivity among thirteen Canadian cities. Supplementary materials accompanying this paper appear online.

Suggested Citation

  • Jie Jian & Peijun Sang & Mu Zhu, 2024. "Two Gaussian Regularization Methods for Time-Varying Networks," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 853-873, December.
  • Handle: RePEc:spr:jagbes:v:29:y:2024:i:4:d:10.1007_s13253-023-00591-w
    DOI: 10.1007/s13253-023-00591-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-023-00591-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-023-00591-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    2. Arend Voorman & Ali Shojaie & Daniela Witten, 2014. "Graph estimation with joint additive models," Biometrika, Biometrika Trust, vol. 101(1), pages 85-101.
    3. Ye, Gui-Bo & Xie, Xiaohui, 2011. "Split Bregman method for large scale fused Lasso," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1552-1569, April.
    4. Patrick Danaher & Pei Wang & Daniela M. Witten, 2014. "The joint graphical lasso for inverse covariance estimation across multiple classes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 373-397, March.
    5. Peng, Jie & Wang, Pei & Zhou, Nengfeng & Zhu, Ji, 2009. "Partial Correlation Estimation by Joint Sparse Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 735-746.
    6. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    7. Meinshausen, Nicolai, 2008. "A note on the Lasso for Gaussian graphical model selection," Statistics & Probability Letters, Elsevier, vol. 78(7), pages 880-884, May.
    8. Li‐Pang Chen & Grace Y. Yi, 2021. "Analysis of noisy survival data with graphical proportional hazards measurement error models," Biometrics, The International Biometric Society, vol. 77(3), pages 956-969, September.
    9. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    10. Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    2. Zhou, Jia & Li, Yang & Zheng, Zemin & Li, Daoji, 2022. "Reproducible learning in large-scale graphical models," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    3. Siwei Xia & Yuehan Yang & Hu Yang, 2022. "Sparse Laplacian Shrinkage with the Graphical Lasso Estimator for Regression Problems," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 255-277, March.
    4. Shuichi Kawano, 2021. "Sparse principal component regression via singular value decomposition approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 795-823, September.
    5. Banerjee, Sayantan, 2022. "Horseshoe shrinkage methods for Bayesian fusion estimation," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    6. Hyungrok Do & Shinjini Nandi & Preston Putzel & Padhraic Smyth & Judy Zhong, 2023. "A joint fairness model with applications to risk predictions for underrepresented populations," Biometrics, The International Biometric Society, vol. 79(2), pages 826-840, June.
    7. Taha Alshaybawee & Habshah Midi & Rahim Alhamzawi, 2017. "Bayesian elastic net single index quantile regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 853-871, April.
    8. Audrino, Francesco & Tetereva, Anastasija, 2019. "Sentiment spillover effects for US and European companies," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 542-567.
    9. Jingying Yang & Guishu Bai & Mei Yan, 2023. "Minimum Residual Sum of Squares Estimation Method for High-Dimensional Partial Correlation Coefficient," Mathematics, MDPI, vol. 11(20), pages 1-22, October.
    10. Laura Freijeiro‐González & Manuel Febrero‐Bande & Wenceslao González‐Manteiga, 2022. "A Critical Review of LASSO and Its Derivatives for Variable Selection Under Dependence Among Covariates," International Statistical Review, International Statistical Institute, vol. 90(1), pages 118-145, April.
    11. Yi Zhao & Bingkai Wang & Chin‐Fu Liu & Andreia V. Faria & Michael I. Miller & Brian S. Caffo & Xi Luo, 2023. "Identifying brain hierarchical structures associated with Alzheimer's disease using a regularized regression method with tree predictors," Biometrics, The International Biometric Society, vol. 79(3), pages 2333-2345, September.
    12. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    13. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    14. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    15. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
    16. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    17. Murat Genç & M. Revan Özkale, 2021. "Usage of the GO estimator in high dimensional linear models," Computational Statistics, Springer, vol. 36(1), pages 217-239, March.
    18. Victor Chernozhukov & Christian Hansen & Yuan Liao, 2015. "A lava attack on the recovery of sums of dense and sparse signals," CeMMAP working papers CWP56/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Wang, Shixuan & Syntetos, Aris A. & Liu, Ying & Di Cairano-Gilfedder, Carla & Naim, Mohamed M., 2023. "Improving automotive garage operations by categorical forecasts using a large number of variables," European Journal of Operational Research, Elsevier, vol. 306(2), pages 893-908.
    20. Takumi Saegusa & Tianzhou Ma & Gang Li & Ying Qing Chen & Mei-Ling Ting Lee, 2020. "Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 376-398, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:29:y:2024:i:4:d:10.1007_s13253-023-00591-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.