IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i5d10.1007_s10668-023-03978-4.html
   My bibliography  Save this article

Data-driven reference evapotranspiration (ET0) estimation: a comparative study of regression and machine learning techniques

Author

Listed:
  • Jitendra Rajput

    (ICAR-IARI
    ICAR-IARI)

  • Man Singh

    (ICAR-IARI)

  • K. Lal

    (ICAR-IARI)

  • Manoj Khanna

    (ICAR-IARI)

  • A. Sarangi

    (ICAR-IARI)

  • J. Mukherjee

    (ICAR-IARI)

  • Shrawan Singh

    (ICAR-IARI)

Abstract

Precise computation of evapotranspiration is critical for an efficient irrigation planning and managing agriculture water. This investigation aimed to study the performance of regression techniques and machine learning (ML) techniques in estimating daily reference evapotranspiration (ET0) and compare them to the ET0 computed by the Penman–Monteith (PM-56) technique of “Food and Agriculture Organization” (FAO). The study used the meteorological data of the Pusa Institute, ICAR-IARI, New Delhi, which is located in a semi-arid climatic zone, for a period of 31 years (1990–2020). Six regression techniques were used, including multiple linear regression (MLR), elastic net regression (ENR), ridge regression (RDR), lasso regression (LASSOR), partial least square regression (PLSR), and Poisson regression (POR). Four machine learning models, namely radial basis function (RBF), M5Tree, locally weighted learning (LWL), and gradient boosted tree (GBT), were also evaluated for predicting daily ET0. The M5Tree model outclassed all other models in predicting daily ET0, with a mean absolute error (MAE), mean squared error (MSE), root-mean-squared error (RMSE), R-squared (R2), mean absolute percentage error (MAPE), and Willmott's index (d) of 0.088, 0.018, 0.136, 0.994, 3.073%, and 0.914, respectively, in training of the models. While during testing period, M5Tree model gave MAE, MSE, RMSE, R2, MAPE and d values as 0.114, 0.16, 0.382, 0.949, 3.946% and 0.988, respectively. During training phase, the GBT model reported MAE, MSE, RMSE, R2, MAPE and d as 0.097, 0.021, 0.145, 0.993, 3.257% and 0.998, respectively, which were slightly poor than the M5Tree model. Further, the GBT model showed the best performance during model testing, with MAE, MSE, RMSE, R2, MAPE, and d of 0.126, 0.053, 0.230, 0.982, 4.166%, and 0.995, respectively. Additionally, the POR model performed the worst in predicting daily ET0 values, as evidenced by the prediction error statistics. In conclusion, the developed ET0 model may be utilized to precisely predict ET0 in semi-arid region for efficient irrigation scheduling, especially in the absence of weighing type field lysimeter.

Suggested Citation

  • Jitendra Rajput & Man Singh & K. Lal & Manoj Khanna & A. Sarangi & J. Mukherjee & Shrawan Singh, 2024. "Data-driven reference evapotranspiration (ET0) estimation: a comparative study of regression and machine learning techniques," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 12679-12706, May.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:5:d:10.1007_s10668-023-03978-4
    DOI: 10.1007/s10668-023-03978-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03978-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03978-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jayashree T R & NV Subba Reddy & U Dinesh Acharya, 2023. "Modeling Daily Reference Evapotranspiration from Climate Variables: Assessment of Bagging and Boosting Regression Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1013-1032, February.
    2. Malik, Anurag & Jamei, Mehdi & Ali, Mumtaz & Prasad, Ramendra & Karbasi, Masoud & Yaseen, Zaher Mundher, 2022. "Multi-step daily forecasting of reference evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge regression feature selection," Agricultural Water Management, Elsevier, vol. 272(C).
    3. Long Qian & Lifeng Wu & Xiaogang Liu & Yaokui Cui & Yongwen Wang, 2022. "Comparison of CLDAS and Machine Learning Models for Reference Evapotranspiration Estimation under Limited Meteorological Data," Sustainability, MDPI, vol. 14(21), pages 1-24, November.
    4. Tianao Wu & Wei Zhang & Xiyun Jiao & Weihua Guo & Yousef Alhaj Hamoud, 2020. "Comparison of five Boosting-based models for estimating daily reference evapotranspiration with limited meteorological variables," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-28, June.
    5. Santos Henrique Brant Dias & Roberto Filgueiras & Elpídio Inácio Fernandes Filho & Gemima Santos Arcanjo & Gustavo Henrique da Silva & Everardo Chartuni Mantovani & Fernando França da Cunha, 2021. "Reference evapotranspiration of Brazil modeled with machine learning techniques and remote sensing," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-19, February.
    6. Ozgur Kisi & Coskun Ozkan, 2017. "Erratum to: A New Approach for Modeling Sediment-Discharge Relationship: Local Weighted Linear Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 25-25, January.
    7. Ozgur Kisi & Coskun Ozkan, 2017. "A New Approach for Modeling Sediment-Discharge Relationship: Local Weighted Linear Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 1-23, January.
    8. Alexis Comber & Paul Harris, 2018. "Geographically weighted elastic net logistic regression," Journal of Geographical Systems, Springer, vol. 20(4), pages 317-341, October.
    9. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    10. Soo-Jin Kim & Seung-Jong Bae & Min-Won Jang, 2022. "Linear Regression Machine Learning Algorithms for Estimating Reference Evapotranspiration Using Limited Climate Data," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
    11. Rana Muhammad Adnan & Abolfazl Jaafari & Aadhityaa Mohanavelu & Ozgur Kisi & Ahmed Elbeltagi, 2021. "Novel Ensemble Forecasting of Streamflow Using Locally Weighted Learning Algorithm," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    12. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    13. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    14. Kisi, Ozgur, 2016. "Modeling reference evapotranspiration using three different heuristic regression approaches," Agricultural Water Management, Elsevier, vol. 169(C), pages 162-172.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fekadu L. Bayisa & Markus Ådahl & Patrik Rydén & Ottmar Cronie, 2023. "Regularised Semi-parametric Composite Likelihood Intensity Modelling of a Swedish Spatial Ambulance Call Point Pattern," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(4), pages 664-683, December.
    2. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    3. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    4. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    5. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    6. Gustavo A. Alonso-Silverio & Víctor Francisco-García & Iris P. Guzmán-Guzmán & Elías Ventura-Molina & Antonio Alarcón-Paredes, 2021. "Toward Non-Invasive Estimation of Blood Glucose Concentration: A Comparative Performance," Mathematics, MDPI, vol. 9(20), pages 1-13, October.
    7. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    8. Gurgul Henryk & Machno Artur, 2017. "Trade Pattern on Warsaw Stock Exchange and Prediction of Number of Trades," Statistics in Transition New Series, Statistics Poland, vol. 18(1), pages 91-114, March.
    9. Michael Funke & Kadri Männasoo & Helery Tasane, 2023. "Regional Economic Impacts of the Øresund Cross-Border Fixed Link: Cui Bono?," CESifo Working Paper Series 10557, CESifo.
    10. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    12. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    13. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    14. Abhinav Kaushik & Diane Dunham & Xiaorui Han & Evan Do & Sandra Andorf & Sheena Gupta & Andrea Fernandes & Laurie Elizabeth Kost & Sayantani B. Sindher & Wong Yu & Mindy Tsai & Robert Tibshirani & Sco, 2022. "CD8+ T cell differentiation status correlates with the feasibility of sustained unresponsiveness following oral immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
    16. Michele Lalla & Patrizio Frederic, 2020. "Tertiary education decisions of immigrants and non-immigrants in Italy: an empirical approach," Department of Economics 0168, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    17. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    18. Foutzopoulos, Giorgos & Pandis, Nikolaos & Tsagris, Michail, 2024. "Predicting full retirement attainment of NBA players," MPRA Paper 121540, University Library of Munich, Germany.
    19. repec:hum:wpaper:sfb649dp2013-037 is not listed on IDEAS
    20. Zeyu Bian & Erica E. M. Moodie & Susan M. Shortreed & Sahir Bhatnagar, 2023. "Variable selection in regression‐based estimation of dynamic treatment regimes," Biometrics, The International Biometric Society, vol. 79(2), pages 988-999, June.
    21. Alexis Comber & Paul Harris, 2018. "Geographically weighted elastic net logistic regression," Journal of Geographical Systems, Springer, vol. 20(4), pages 317-341, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:5:d:10.1007_s10668-023-03978-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.