IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0245834.html
   My bibliography  Save this article

Reference evapotranspiration of Brazil modeled with machine learning techniques and remote sensing

Author

Listed:
  • Santos Henrique Brant Dias
  • Roberto Filgueiras
  • Elpídio Inácio Fernandes Filho
  • Gemima Santos Arcanjo
  • Gustavo Henrique da Silva
  • Everardo Chartuni Mantovani
  • Fernando França da Cunha

Abstract

Reference evapotranspiration (ETo) is a fundamental parameter for hydrological studies and irrigation management. The Penman-Monteith method is the standard to estimate ETo and requires several meteorological elements. In developing countries, the number of weather stations is insufficient. Thus, free products of remote sensing with evapotranspiration information must be used for this purpose. In this context, the objective of this study was to estimate monthly ETo from potential evapotranspiration (PET) made available by MOD16 product. In this study, the monthly ETo estimated by Penman-Monteith method was considered as the standard. For this, data from 265 weather station of the National Institute of Meteorology (INMET), spread all over the Brazilian territory, were acquired for the period from 2000 to 2014 (15 years). For these months, monthly PET values from MOD16 product for all Brazil were also downloaded. By using machine learning algorithms and information from WorldClim as covariates, ETo was estimated through images from the MOD16 product. To perform the modeling of ETo, eight regression algorithms were tested: multiple linear regression; random forest; cubist; partial least squares; principal components regression; adaptive forward-backward greedy; generalized boosted regression and generalized linear model by likelihood-based boosting. Data from 2000 to 2012 (13 years) were used for training and data of 2013 and 2014 (2 years) were used to test the models. The PET made available by the MOD16 product showed higher values than those of ETo for different periods and climatic regions of Brazil. However, the MOD16 product showed good correlation with ETo, indicating that it can be used in ETo estimation. All models of machine learning were effective in improving the performance of the metrics evaluated. Cubist was the model that presented the best metrics for r2 (0.91), NSE (0.90) and nRMSE (8.54%) and should be preferred for ETo prediction. MOD16 product is recommended to be used to predict monthly ETo, which opens possibilities for its use in several other studies.

Suggested Citation

  • Santos Henrique Brant Dias & Roberto Filgueiras & Elpídio Inácio Fernandes Filho & Gemima Santos Arcanjo & Gustavo Henrique da Silva & Everardo Chartuni Mantovani & Fernando França da Cunha, 2021. "Reference evapotranspiration of Brazil modeled with machine learning techniques and remote sensing," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-19, February.
  • Handle: RePEc:plo:pone00:0245834
    DOI: 10.1371/journal.pone.0245834
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245834
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245834&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0245834?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ferreira, Lucas Borges & da Cunha, Fernando França, 2020. "New approach to estimate daily reference evapotranspiration based on hourly temperature and relative humidity using machine learning and deep learning," Agricultural Water Management, Elsevier, vol. 234(C).
    2. Muniandy, Josilva M. & Yusop, Zulkifli & Askari, Muhamad, 2016. "Evaluation of reference evapotranspiration models and determination of crop coefficient for Momordica charantia and Capsicum annuum," Agricultural Water Management, Elsevier, vol. 169(C), pages 77-89.
    3. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weibing Jia & Yubin Zhang & Zhengying Wei & Zhenhao Zheng & Peijun Xie, 2023. "Daily reference evapotranspiration prediction for irrigation scheduling decisions based on the hybrid PSO-LSTM model," PLOS ONE, Public Library of Science, vol. 18(4), pages 1-25, April.
    2. Jitendra Rajput & Man Singh & K. Lal & Manoj Khanna & A. Sarangi & J. Mukherjee & Shrawan Singh, 2024. "Data-driven reference evapotranspiration (ET0) estimation: a comparative study of regression and machine learning techniques," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 12679-12706, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    2. Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    3. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    4. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    5. Fuentes, Sigfredo & Ortega-Farías, Samuel & Carrasco-Benavides, Marcos & Tongson, Eden & Gonzalez Viejo, Claudia, 2024. "Actual evapotranspiration and energy balance estimation from vineyards using micro-meteorological data and machine learning modeling," Agricultural Water Management, Elsevier, vol. 297(C).
    6. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
    7. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    8. Cao, Jason & Tao, Tao, 2025. "Can an identified environmental correlate of car ownership serve as a practical planning tool?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 191(C).
    9. Dursun Delen & Hamed M. Zolbanin & Durand Crosby & David Wright, 2021. "To imprison or not to imprison: an analytics model for drug courts," Annals of Operations Research, Springer, vol. 303(1), pages 101-124, August.
    10. Doruk Cengiz & Arindrajit Dube & Attila Lindner & David Zentler-Munro, 2022. "Seeing beyond the Trees: Using Machine Learning to Estimate the Impact of Minimum Wages on Labor Market Outcomes," Journal of Labor Economics, University of Chicago Press, vol. 40(S1), pages 203-247.
    11. Zhou, Jing & Li, Wei & Wang, Jiaxin & Ding, Shuai & Xia, Chengyi, 2019. "Default prediction in P2P lending from high-dimensional data based on machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    12. Lu, Yingjie & Li, Tao & Hu, Hui & Zeng, Xuemei, 2023. "Short-term prediction of reference crop evapotranspiration based on machine learning with different decomposition methods in arid areas of China," Agricultural Water Management, Elsevier, vol. 279(C).
    13. Bohdan M. Pavlyshenko, 2019. "Machine-Learning Models for Sales Time Series Forecasting," Data, MDPI, vol. 4(1), pages 1-11, January.
    14. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    15. Jason R. W. Merrick & Claire A. Dorsey & Bo Wang & Martha Grabowski & John R. Harrald, 2022. "Measuring Prediction Accuracy in a Maritime Accident Warning System," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 819-827, February.
    16. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    17. Adler, Werner & Lausen, Berthold, 2009. "Bootstrap estimated true and false positive rates and ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 718-729, January.
    18. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
    19. Andrea Sciandra & Alessio Surian & Livio Finos, 2021. "Supervised Machine Learning Methods to Disclose Action and Information in “U.N. 2030 Agenda” Social Media Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 689-699, August.
    20. Mirosław Parol & Paweł Piotrowski & Piotr Kapler & Mariusz Piotrowski, 2021. "Forecasting of 10-Second Power Demand of Highly Variable Loads for Microgrid Operation Control," Energies, MDPI, vol. 14(5), pages 1-29, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0245834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.