IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v4y2019i1p15-d198898.html
   My bibliography  Save this article

Machine-Learning Models for Sales Time Series Forecasting

Author

Listed:
  • Bohdan M. Pavlyshenko

    (SoftServe, Inc., 2D Sadova St., 79021 Lviv, Ukraine
    Ivan Franko National University of Lviv, 1, Universytetska St., 79000 Lviv, Ukraine)

Abstract

In this paper, we study the usage of machine-learning models for sales predictive analytics. The main goal of this paper is to consider main approaches and case studies of using machine learning for sales forecasting. The effect of machine-learning generalization has been considered. This effect can be used to make sales predictions when there is a small amount of historical data for specific sales time series in the case when a new product or store is launched. A stacking approach for building regression ensemble of single models has been studied. The results show that using stacking techniques, we can improve the performance of predictive models for sales time series forecasting.

Suggested Citation

  • Bohdan M. Pavlyshenko, 2019. "Machine-Learning Models for Sales Time Series Forecasting," Data, MDPI, vol. 4(1), pages 1-11, January.
  • Handle: RePEc:gam:jdataj:v:4:y:2019:i:1:p:15-:d:198898
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/4/1/15/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/4/1/15/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Armstrong, J. Scott, 1989. "Combining forecasts: The end of the beginning or the beginning of the end?," International Journal of Forecasting, Elsevier, vol. 5(4), pages 585-588.
    2. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    3. Georgia Papacharalampous & Hristos Tyralis & Demetris Koutsoyiannis, 2018. "Univariate Time Series Forecasting of Temperature and Precipitation with a Focus on Machine Learning Algorithms: a Multiple-Case Study from Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 5207-5239, December.
    4. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    5. Graefe, Andreas & Armstrong, J. Scott & Jones, Randall J. & Cuzán, Alfred G., 2014. "Combining forecasts: An application to elections," International Journal of Forecasting, Elsevier, vol. 30(1), pages 43-54.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuan Bi & Gediminas Adomavicius & William Li & Annie Qu, 2022. "Improving Sales Forecasting Accuracy: A Tensor Factorization Approach with Demand Awareness," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1644-1660, May.
    2. Hao Wang & Chen Peng & Bolin Liao & Xinwei Cao & Shuai Li, 2023. "Wind Power Forecasting Based on WaveNet and Multitask Learning," Sustainability, MDPI, vol. 15(14), pages 1-22, July.
    3. Nelson Kemboi Yego & Juma Kasozi & Joseph Nkurunziza, 2021. "A Comparative Analysis of Machine Learning Models for the Prediction of Insurance Uptake in Kenya," Data, MDPI, vol. 6(11), pages 1-17, November.
    4. Johannes Habel & Sascha Alavi & Nicolas Heinitz, 2023. "A theory of predictive sales analytics adoption," AMS Review, Springer;Academy of Marketing Science, vol. 13(1), pages 34-54, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gavin Boyd & Dain Na & Zhong Li & Spencer Snowling & Qianqian Zhang & Pengxiao Zhou, 2019. "Influent Forecasting for Wastewater Treatment Plants in North America," Sustainability, MDPI, vol. 11(6), pages 1-14, March.
    2. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    3. Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
    4. Gür Ali, Özden & Gürlek, Ragıp, 2020. "Automatic Interpretable Retail forecasting with promotional scenarios," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1389-1406.
    5. Mansoor, Umer & Jamal, Arshad & Su, Junbiao & Sze, N.N. & Chen, Anthony, 2023. "Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations," Transport Policy, Elsevier, vol. 139(C), pages 21-38.
    6. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    7. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    8. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 53(6), pages 286-303, January.
    9. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    10. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    11. Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
    12. Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
    13. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    14. Amita Gajewar & Gagan Bansal, 2016. "Revenue Forecasting for Enterprise Products," Papers 1701.06624, arXiv.org.
    15. Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    16. Pieter van der Spek & Chris Verhoef, 2014. "Balancing Time‐to‐Market and Quality in Embedded Systems," Systems Engineering, John Wiley & Sons, vol. 17(2), pages 166-192, June.
    17. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    18. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    19. Ronald McDonald & Xuxin Mao, 2015. "Forecasting the 2015 General Election with Internet Big Data: An Application of the TRUST Framework," Working Papers 2016_03, Business School - Economics, University of Glasgow.
    20. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:4:y:2019:i:1:p:15-:d:198898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.