Actual evapotranspiration and energy balance estimation from vineyards using micro-meteorological data and machine learning modeling
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2024.108834
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Granata, Francesco, 2019. "Evapotranspiration evaluation models based on machine learning algorithms—A comparative study," Agricultural Water Management, Elsevier, vol. 217(C), pages 303-315.
- Knipper, K.R. & Kustas, W.P. & Anderson, M.C. & Nieto, H. & Alfieri, J.G. & Prueger, J.H. & Hain, C.R. & Gao, F. & McKee, L.G. & Alsina, M. Mar & Sanchez, L., 2020. "Using high-spatiotemporal thermal satellite ET retrievals to monitor water use over California vineyards of different climate, vine variety and trellis design," Agricultural Water Management, Elsevier, vol. 241(C).
- Poblete-Echeverría, C. & Ortega-Farias, S. & Zuñiga, M. & Fuentes, S., 2012. "Evaluation of compensated heat-pulse velocity method to determine vine transpiration using combined measurements of eddy covariance system and microlysimeters," Agricultural Water Management, Elsevier, vol. 109(C), pages 11-19.
- Granata, Francesco & Di Nunno, Fabio, 2021. "Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks," Agricultural Water Management, Elsevier, vol. 255(C).
- Zhao, Peng & Li, Sien & Li, Fusheng & Du, Taisheng & Tong, Ling & Kang, Shaozhong, 2015. "Comparison of dual crop coefficient method and Shuttleworth–Wallace model in evapotranspiration partitioning in a vineyard of northwest China," Agricultural Water Management, Elsevier, vol. 160(C), pages 41-56.
- Torres, Alfonso F. & Walker, Wynn R. & McKee, Mac, 2011. "Forecasting daily potential evapotranspiration using machine learning and limited climatic data," Agricultural Water Management, Elsevier, vol. 98(4), pages 553-562, February.
- Ferreira, Lucas Borges & da Cunha, Fernando França, 2020. "New approach to estimate daily reference evapotranspiration based on hourly temperature and relative humidity using machine learning and deep learning," Agricultural Water Management, Elsevier, vol. 234(C).
- Jiao, Linjie & Ding, Risheng & Kang, Shaozhong & Du, Taisheng & Tong, Ling & Li, Sien, 2018. "A comparison of energy partitioning and evapotranspiration over closed maize and sparse grapevine canopies in northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 251-260.
- Allen, Richard G. & Pereira, Luis S. & Howell, Terry A. & Jensen, Marvin E., 2011. "Evapotranspiration information reporting: II. Recommended documentation," Agricultural Water Management, Elsevier, vol. 98(6), pages 921-929, April.
- Ramírez-Cuesta, J.M. & Intrigliolo, D.S. & Lorite, I.J. & Moreno, M.A. & Vanella, D. & Ballesteros, R. & Hernández-López, D. & Buesa, I., 2023. "Determining grapevine water use under different sustainable agronomic practices using METRIC-UAV surface energy balance model," Agricultural Water Management, Elsevier, vol. 281(C).
- Allen, Richard G. & Pereira, Luis S. & Howell, Terry A. & Jensen, Marvin E., 2011. "Evapotranspiration information reporting: I. Factors governing measurement accuracy," Agricultural Water Management, Elsevier, vol. 98(6), pages 899-920, April.
- Ortega-Salazar, Samuel & Ortega-Farías, Samuel & Kilic, Ayse & Allen, Richard, 2021. "Performance of the METRIC model for mapping energy balance components and actual evapotranspiration over a superintensive drip-irrigated olive orchard," Agricultural Water Management, Elsevier, vol. 251(C).
- Ohana-Levi, Noa & Ben-Gal, Alon & Munitz, Sarel & Netzer, Yishai, 2022. "Grapevine crop evapotranspiration and crop coefficient forecasting using linear and non-linear multiple regression models," Agricultural Water Management, Elsevier, vol. 262(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ricardo Egipto & Arturo Aquino & José Manuel Andújar, 2024. "Dynamics of Energy Fluxes in a Mediterranean Vineyard: Influence of Soil Moisture," Agriculture, MDPI, vol. 14(10), pages 1-21, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Lei & Zhao, Xin & Zhu, Ge & He, Jun & Chen, Jian & Chen, Zhicheng & Traore, Seydou & Liu, Junguo & Singh, Vijay P., 2023. "Short-term daily reference evapotranspiration forecasting using temperature-based deep learning models in different climate zones in China," Agricultural Water Management, Elsevier, vol. 289(C).
- Feng, Jiaojiao & Wang, Weizhen & Xu, Feinan & Wang, Shengtang, 2024. "Evaluating the ability of deep learning on actual daily evapotranspiration estimation over the heterogeneous surfaces," Agricultural Water Management, Elsevier, vol. 291(C).
- Malik, Anurag & Jamei, Mehdi & Ali, Mumtaz & Prasad, Ramendra & Karbasi, Masoud & Yaseen, Zaher Mundher, 2022. "Multi-step daily forecasting of reference evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge regression feature selection," Agricultural Water Management, Elsevier, vol. 272(C).
- Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
- Escarabajal-Henarejos, D. & Fernández-Pacheco, D.G. & Molina-Martínez, J.M. & Martínez-Molina, L. & Ruiz-Canales, A., 2015. "Selection of device to determine temperature gradients for estimating evapotranspiration using energy balance method," Agricultural Water Management, Elsevier, vol. 151(C), pages 136-147.
- Fabio Di Nunno & Marco De Matteo & Giovanni Izzo & Francesco Granata, 2023. "A Combined Clustering and Trends Analysis Approach for Characterizing Reference Evapotranspiration in Veneto," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
- Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
- Granata, Francesco & Di Nunno, Fabio, 2021. "Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks," Agricultural Water Management, Elsevier, vol. 255(C).
- Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
- Miao, Qingfeng & Rosa, Ricardo D. & Shi, Haibin & Paredes, Paula & Zhu, Li & Dai, Jiaxin & Gonçalves, José M. & Pereira, Luis S., 2016. "Modeling water use, transpiration and soil evaporation of spring wheat–maize and spring wheat–sunflower relay intercropping using the dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 165(C), pages 211-229.
- Machakaire, A.T.B. & Steyn, J.M. & Franke, A.C., 2021. "Assessing evapotranspiration and crop coefficients of potato in a semi-arid climate using Eddy Covariance techniques," Agricultural Water Management, Elsevier, vol. 255(C).
- Zhao, Peng & Kang, Shaozhong & Li, Sien & Ding, Risheng & Tong, Ling & Du, Taisheng, 2018. "Seasonal variations in vineyard ET partitioning and dual crop coefficients correlate with canopy development and surface soil moisture," Agricultural Water Management, Elsevier, vol. 197(C), pages 19-33.
- Wang, Shangtao & Zhu, Gaofeng & Xia, Dunsheng & Ma, Jinzhu & Han, Tuo & Ma, Ting & Zhang, Kun & Shang, Shasha, 2019. "The characteristics of evapotranspiration and crop coefficients of an irrigated vineyard in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 388-398.
- Chen, Han & Huang, Jinhui Jeanne & McBean, Edward, 2020. "Partitioning of daily evapotranspiration using a modified shuttleworth-wallace model, random Forest and support vector regression, for a cabbage farmland," Agricultural Water Management, Elsevier, vol. 228(C).
- Martí, Pau & López-Urrea, Ramón & Mancha, Luis A. & González-Altozano, Pablo & Román, Armand, 2024. "Seasonal assessment of the grass reference evapotranspiration estimation from limited inputs using different calibrating time windows and lysimeter benchmarks," Agricultural Water Management, Elsevier, vol. 300(C).
- Toureiro, Célia & Serralheiro, Ricardo & Shahidian, Shakib & Sousa, Adélia, 2017. "Irrigation management with remote sensing: Evaluating irrigation requirement for maize under Mediterranean climate condition," Agricultural Water Management, Elsevier, vol. 184(C), pages 211-220.
- Erdem Küçüktopcu & Emirhan Cemek & Bilal Cemek & Halis Simsek, 2023. "Hybrid Statistical and Machine Learning Methods for Daily Evapotranspiration Modeling," Sustainability, MDPI, vol. 15(7), pages 1-15, March.
- Traore, Seydou & Luo, Yufeng & Fipps, Guy, 2016. "Deployment of artificial neural network for short-term forecasting of evapotranspiration using public weather forecast restricted messages," Agricultural Water Management, Elsevier, vol. 163(C), pages 363-379.
- Valipour, Mohammad & Khoshkam, Helaleh & Bateni, Sayed M. & Jun, Changhyun & Band, Shahab S., 2023. "Hybrid machine learning and deep learning models for multi-step-ahead daily reference evapotranspiration forecasting in different climate regions across the contiguous United States," Agricultural Water Management, Elsevier, vol. 283(C).
- Ramos, Tiago B. & Liu, Meihan & Paredes, Paula & Shi, Haibin & Feng, Zhuangzhuang & Lei, Huimin & Pereira, Luis S., 2023. "Salts dynamics in maize irrigation in the Hetao plateau using static water table lysimeters and HYDRUS-1D with focus on the autumn leaching irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
More about this item
Keywords
Artificial neural networks; Eddy covariance; Thermal time; Plant water demand; Plant water status; Energy balance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:297:y:2024:i:c:s0378377424001690. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.