IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v251y2021ics0378377421001268.html
   My bibliography  Save this article

Performance of the METRIC model for mapping energy balance components and actual evapotranspiration over a superintensive drip-irrigated olive orchard

Author

Listed:
  • Ortega-Salazar, Samuel
  • Ortega-Farías, Samuel
  • Kilic, Ayse
  • Allen, Richard

Abstract

A field experiment was performed to evaluate the Mapping Evapotranspiration at High Resolution using Internalized Calibration (METRIC) model that was used for mapping surface energy balance (SEB) components (net radiation (Rni), soil heat flux (Gi), sensible heat flux (Hi), and latent heat flux (LEi)) at times of Landsat satellite overpasses in conjunction with the actual evapotranspiration (ETa) and crop coefficient (Kc) for a superintensive, drip-irrigated olive (Olea europeae L. cv Arbequina) orchard. The orchard is located in the Pencahue Valley, Maule Region, Chile (35 23' LS; 71 44' LW; 96 m above sea level), and the study was conducted on an experimental plot of 21.1 ha during the 2011/2012 and 2012/2013 growing seasons. Model performance was evaluated using measurements of LEi, ETa and Kc that were obtained from an eddy covariance (EC) system. Olive-specific functions for estimating aerodynamic roughness (zom), leaf area index (LAI), and Gi were employed in the METRIC algorithm. In addition, submodels of Rni and Gi were evaluated via ground-truth measurements from a Fritchen-type net radiometer and soil flux plates, respectively. The results indicated that the errors within the METRIC model for the SEB components were between 2% and 5% of the observed values, while those for ETa and Kc were between 4% and 6% of the EC values. In addition, both the root mean square error (RMSE) and mean absolute error (MAE) for the SEB components were less than 46 W∙m−2 at the times of satellite overpass. The RMSE and MAE values for the 24-h ETa were 0.42 and 0.31 mm·day−1, respectively, while the corresponding values for Kc were 0.09 and 0.02, respectively. The coefficients of variation (CVs) for the SEB components, ETa and Kc were less than 15%, and the largest intraorchard spatial variability occurred for LEi and, thus, ETa. The errors and uncertainties in the SEB and ETa estimates were small enough to warrant application of the METRIC model with olive-specific functions for zom, LAI and Gi to superintensive drip-irrigated olive orchards.

Suggested Citation

  • Ortega-Salazar, Samuel & Ortega-Farías, Samuel & Kilic, Ayse & Allen, Richard, 2021. "Performance of the METRIC model for mapping energy balance components and actual evapotranspiration over a superintensive drip-irrigated olive orchard," Agricultural Water Management, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:agiwat:v:251:y:2021:i:c:s0378377421001268
    DOI: 10.1016/j.agwat.2021.106861
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421001268
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106861?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Er-Raki, S. & Chehbouni, A. & Boulet, G. & Williams, D.G., 2010. "Using the dual approach of FAO-56 for partitioning ET into soil and plant components for olive orchards in a semi-arid region," Agricultural Water Management, Elsevier, vol. 97(11), pages 1769-1778, November.
    2. Knipper, K.R. & Kustas, W.P. & Anderson, M.C. & Nieto, H. & Alfieri, J.G. & Prueger, J.H. & Hain, C.R. & Gao, F. & McKee, L.G. & Alsina, M. Mar & Sanchez, L., 2020. "Using high-spatiotemporal thermal satellite ET retrievals to monitor water use over California vineyards of different climate, vine variety and trellis design," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Ezzahar, J. & Chehbouni, A. & Hoedjes, J.C.B. & Er-Raki, S. & Chehbouni, Ah. & Boulet, G. & Bonnefond, J.-M. & De Bruin, H.A.R., 2007. "The use of the scintillation technique for monitoring seasonal water consumption of olive orchards in a semi-arid region," Agricultural Water Management, Elsevier, vol. 89(3), pages 173-184, May.
    4. Moriana, Alfonso & Perez-Lopez, David & Gomez-Rico, Aurora & Salvador, Maria de los Desamparados & Olmedilla, Nicolas & Ribas, Francisco & Fregapane, Giuseppe, 2007. "Irrigation scheduling for traditional, low-density olive orchards: Water relations and influence on oil characteristics," Agricultural Water Management, Elsevier, vol. 87(2), pages 171-179, January.
    5. C. Cammalleri & G. Ciraolo & M. Minacapilli & G. Rallo, 2013. "Evapotranspiration from an Olive Orchard using Remote Sensing-Based Dual Crop Coefficient Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4877-4895, November.
    6. Folhes, M.T. & Rennó, C.D. & Soares, J.V., 2009. "Remote sensing for irrigation water management in the semi-arid Northeast of Brazil," Agricultural Water Management, Elsevier, vol. 96(10), pages 1398-1408, October.
    7. Er-Raki, S. & Chehbouni, A. & Hoedjes, J. & Ezzahar, J. & Duchemin, B. & Jacob, F., 2008. "Improvement of FAO-56 method for olive orchards through sequential assimilation of thermal infrared-based estimates of ET," Agricultural Water Management, Elsevier, vol. 95(3), pages 309-321, March.
    8. Ahumada-Orellana, Luis E. & Ortega-Farías, Samuel & Searles, Peter S., 2018. "Olive oil quality response to irrigation cut-off strategies in a super-high density orchard," Agricultural Water Management, Elsevier, vol. 202(C), pages 81-88.
    9. C. Santos & I. Lorite & R. Allen & M. Tasumi, 2012. "Aerodynamic Parameterization of the Satellite-Based Energy Balance (METRIC) Model for ET Estimation in Rainfed Olive Orchards of Andalusia, Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3267-3283, September.
    10. Martínez-Cob, A. & Faci, J.M., 2010. "Evapotranspiration of an hedge-pruned olive orchard in a semiarid area of NE Spain," Agricultural Water Management, Elsevier, vol. 97(3), pages 410-418, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masoud Derakhshandeh & Mustafa Tombul, 2022. "Calibration of METRIC Modeling for Evapotranspiration Estimation Using Landsat 8 Imagery Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 315-339, January.
    2. He, Ruyan & Jin, Yufang & Jiang, Jinbao & Xu, Meng & Jia, Sen, 2022. "Sensitivity of METRIC-based tree crop evapotranspiration estimation to meteorology, land surface parameters and domain size," Agricultural Water Management, Elsevier, vol. 271(C).
    3. Wei, Jiaxing & Dong, Weichen & Liu, Shaomin & Song, Lisheng & Zhou, Ji & Xu, Ziwei & Wang, Ziwei & Xu, Tongren & He, Xinlei & Sun, Jingwei, 2023. "Mapping super high resolution evapotranspiration in oasis-desert areas using UAV multi-sensor data," Agricultural Water Management, Elsevier, vol. 287(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pôças, I. & Calera, A. & Campos, I. & Cunha, M., 2020. "Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches," Agricultural Water Management, Elsevier, vol. 233(C).
    2. C. Santos & I. Lorite & R. Allen & M. Tasumi, 2012. "Aerodynamic Parameterization of the Satellite-Based Energy Balance (METRIC) Model for ET Estimation in Rainfed Olive Orchards of Andalusia, Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3267-3283, September.
    3. Er-Raki, S. & Chehbouni, A. & Boulet, G. & Williams, D.G., 2010. "Using the dual approach of FAO-56 for partitioning ET into soil and plant components for olive orchards in a semi-arid region," Agricultural Water Management, Elsevier, vol. 97(11), pages 1769-1778, November.
    4. Ramos, Tiago B. & Darouich, Hanaa & Oliveira, Ana R. & Farzamian, Mohammad & Monteiro, Tomás & Castanheira, Nádia & Paz, Ana & Gonçalves, Maria C. & Pereira, Luís S., 2023. "Water use and soil water balance of Mediterranean tree crops assessed with the SIMDualKc model in orchards of southern Portugal," Agricultural Water Management, Elsevier, vol. 279(C).
    5. Siakou, M. & Bruggeman, A. & Eliades, M. & Zoumides, C. & Djuma, H. & Kyriacou, M.C. & Emmanouilidou, M.G. & Spyros, A. & Manolopoulou, E. & Moriana, A., 2021. "Effects of deficit irrigation on ‘Koroneiki’ olive tree growth, physiology and olive oil quality at different harvest dates," Agricultural Water Management, Elsevier, vol. 258(C).
    6. Elfarkh, Jamal & Simonneaux, Vincent & Jarlan, Lionel & Ezzahar, Jamal & Boulet, Gilles & Chakir, Adnane & Er-Raki, Salah, 2022. "Evapotranspiration estimates in a traditional irrigated area in semi-arid Mediterranean. Comparison of four remote sensing-based models," Agricultural Water Management, Elsevier, vol. 270(C).
    7. Aouade, G. & Ezzahar, J. & Amenzou, N. & Er-Raki, S. & Benkaddour, A. & Khabba, S. & Jarlan, L., 2016. "Combining stable isotopes, Eddy Covariance system and meteorological measurements for partitioning evapotranspiration, of winter wheat, into soil evaporation and plant transpiration in a semi-arid reg," Agricultural Water Management, Elsevier, vol. 177(C), pages 181-192.
    8. Amazirh, Abdelhakim & Merlin, Olivier & Er-Raki, Salah & Bouras, Elhoussaine & Chehbouni, Abdelghani, 2021. "Implementing a new texture-based soil evaporation reduction coefficient in the FAO dual crop coefficient method," Agricultural Water Management, Elsevier, vol. 250(C).
    9. Diarra, A. & Jarlan, L. & Er-Raki, S. & Le Page, M. & Aouade, G. & Tavernier, A. & Boulet, G. & Ezzahar, J. & Merlin, O. & Khabba, S., 2017. "Performance of the two-source energy budget (TSEB) model for the monitoring of evapotranspiration over irrigated annual crops in North Africa," Agricultural Water Management, Elsevier, vol. 193(C), pages 71-88.
    10. Ramírez-Cuesta, J.M. & Intrigliolo, D.S. & Lorite, I.J. & Moreno, M.A. & Vanella, D. & Ballesteros, R. & Hernández-López, D. & Buesa, I., 2023. "Determining grapevine water use under different sustainable agronomic practices using METRIC-UAV surface energy balance model," Agricultural Water Management, Elsevier, vol. 281(C).
    11. Abou Ali, Asma & Bouchaou, Lhoussaine & Er-Raki, Salah & Hssaissoune, Mohammed & Brouziyne, Youssef & Ezzahar, Jamal & Khabba, Saïd & Chakir, Adnane & Labbaci, Adnane & Chehbouni, Abdelghani, 2023. "Assessment of crop evapotranspiration and deep percolation in a commercial irrigated citrus orchard under semi-arid climate: Combined Eddy-Covariance measurement and soil water balance-based approach," Agricultural Water Management, Elsevier, vol. 275(C).
    12. El Hajj, Marcel M. & Johansen, Kasper & Almashharawi, Samer K. & McCabe, Matthew F., 2023. "Water uptake rates over olive orchards using Sentinel-1 synthetic aperture radar data," Agricultural Water Management, Elsevier, vol. 288(C).
    13. Ortega-Farias, Samuel & Villalobos-Soublett, Emilio & Riveros-Burgos, Camilo & Zúñiga, Mauricio & Ahumada-Orellana, Luis E., 2020. "Effect of irrigation cut-off strategies on yield, water productivity and gas exchange in a drip-irrigated hazelnut (Corylus avellana L. cv. Tonda di Giffoni) orchard under semiarid conditions," Agricultural Water Management, Elsevier, vol. 238(C).
    14. Jinjiao Lian & Mingbin Huang, 2015. "Evapotranspiration Estimation for an Oasis Area in the Heihe River Basin Using Landsat-8 Images and the METRIC Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5157-5170, November.
    15. Athanasios Margonis & Georgia Papaioannou & Petros Kerkides & Gianna Kitsara & George Bourazanis, 2018. "Canopy Resistance and Actual Evapotranspiration over an Olive Orchard," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 5007-5026, December.
    16. C. Cammalleri & G. Ciraolo & M. Minacapilli & G. Rallo, 2013. "Evapotranspiration from an Olive Orchard using Remote Sensing-Based Dual Crop Coefficient Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4877-4895, November.
    17. Rallo, G. & Paço, T.A. & Paredes, P. & Puig-Sirera, À. & Massai, R. & Provenzano, G. & Pereira, L.S., 2021. "Updated single and dual crop coefficients for tree and vine fruit crops," Agricultural Water Management, Elsevier, vol. 250(C).
    18. Ayyoub, A. & Er-Raki, S. & Khabba, S. & Merlin, O. & Ezzahar, J. & Rodriguez, J.C. & Bahlaoui, A. & Chehbouni, A., 2017. "A simple and alternative approach based on reference evapotranspiration and leaf area index for estimating tree transpiration in semi-arid regions," Agricultural Water Management, Elsevier, vol. 188(C), pages 61-68.
    19. Zhao, Peng & Li, Sien & Li, Fusheng & Du, Taisheng & Tong, Ling & Kang, Shaozhong, 2015. "Comparison of dual crop coefficient method and Shuttleworth–Wallace model in evapotranspiration partitioning in a vineyard of northwest China," Agricultural Water Management, Elsevier, vol. 160(C), pages 41-56.
    20. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2016. "Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study," Agricultural Water Management, Elsevier, vol. 177(C), pages 66-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:251:y:2021:i:c:s0378377421001268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.