IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v289y2023ics0378377423003633.html
   My bibliography  Save this article

Short-term daily reference evapotranspiration forecasting using temperature-based deep learning models in different climate zones in China

Author

Listed:
  • Zhang, Lei
  • Zhao, Xin
  • Zhu, Ge
  • He, Jun
  • Chen, Jian
  • Chen, Zhicheng
  • Traore, Seydou
  • Liu, Junguo
  • Singh, Vijay P.

Abstract

The reference evapotranspiration (ETo) pertains to the evapotranspiration of cold-season grasses with an approximate height of 0.12 m or full-covered alfalfa with a height of 0.50 m. Accurate short-term ETo forecasts are indispensable for informed irrigation decisions by relevant departments and individuals. Four deep learning (DL) models, including Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Bidirectional LSTM (Bi-LSTM), and Bidirectional GRU (Bi-GRU), as well as two calibrated empirical models (Hargreaves-Samani (HS) and reduced-set Penman–Monteith (RPM)), were used to evaluate the performance of the ETo forecast with a lead time of 1–7 d using temperature forecasts in different climates. The results reveal that the DL models and calibrated HS and RPM models exhibited comparable trends in the ETo forecasts for lead times of 1–7 d. Nonetheless, the DL models consistently outperformed the HS and RPM models across the diverse climatic regions in China. The DL models displayed an average root mean square error (RMSE) and mean absolute error (MAE) of less than 0.887 and 0.633 mm/d, respectively. Moreover, the mean correlation coefficient (R) and accuracy (ACC) exceeded 0.807% and 89.701%, respectively. Among the DL models, the LSTM model demonstrated slightly superior performance in short-term daily ETo forecasts in diverse climates. The LSTM model exhibited RMSE and MAE ranges of 0.563–0.875 mm/d and 0.418–0.626 mm/d, respectively, along with R and ACC ranges of 0.81–0.90 and 89.94–98.11%, respectively. Furthermore, even with an increase in lead time, the DL models continued to exhibit strong predictive capabilities, consistently surpassing the performance of the HS and RPM models. Overall, the trained DL models presented an exceptional ability to forecast the short-term daily ETo in various climatic regions of China. These models require only a few input variables and readily available data, making them highly advantageous for practical applications in ETo forecasting. Such models hold promise for significantly enhancing regional agricultural water-resource planning and management.

Suggested Citation

  • Zhang, Lei & Zhao, Xin & Zhu, Ge & He, Jun & Chen, Jian & Chen, Zhicheng & Traore, Seydou & Liu, Junguo & Singh, Vijay P., 2023. "Short-term daily reference evapotranspiration forecasting using temperature-based deep learning models in different climate zones in China," Agricultural Water Management, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003633
    DOI: 10.1016/j.agwat.2023.108498
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423003633
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108498?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.