IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v98y2011i4p553-562.html
   My bibliography  Save this article

Forecasting daily potential evapotranspiration using machine learning and limited climatic data

Author

Listed:
  • Torres, Alfonso F.
  • Walker, Wynn R.
  • McKee, Mac

Abstract

Anticipating, or forecasting near-term irrigation demands is a requirement for improved management of conveyance and delivery systems. The most important component of a forecasting regime for irrigation is a simple, yet reliable, approach for forecasting crop water demands, which in this paper is represented by the reference or potential evapotranspiration (ETo). In most cases, weather data in the area is limited to a reduced number of variables measured, therefore current or future ETo estimation is restricted. This paper summarizes the results of testing of two proposed forecasting ETo schemes under the mentioned conditions. The first or "direct" approach involved forecasting ETo using historically computed ETo values. The second or "indirect" approach involved forecasting the required weather parameters for the ETo calculation based on historical data and then computing ETo. An statistical machine learning algorithm, the Multivariate Relevance Vector Machine (MVRVM) is applied to both of the forecastings schemes. The general ETo model used is the 1985 Hargreaves Equation which requires only minimum and maximum daily air temperatures and is thus well suited to regions lacking more comprehensive climatic data. The utility and practicality of the forecasting methodology is demonstrated with an application to an irrigation project in Central Utah. To determine the advantage and suitability of the applied algorithm, another learning machine, the Multilayer Perceptron (MLP), is used for comparison purposes. The robustness and stability of the proposed schemes are tested by the application of the bootstrap analysis.

Suggested Citation

  • Torres, Alfonso F. & Walker, Wynn R. & McKee, Mac, 2011. "Forecasting daily potential evapotranspiration using machine learning and limited climatic data," Agricultural Water Management, Elsevier, vol. 98(4), pages 553-562, February.
  • Handle: RePEc:eee:agiwat:v:98:y:2011:i:4:p:553-562
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00333-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hassan-Esfahani, Leila & Torres-Rua, Alfonso & McKee, Mac, 2015. "Assessment of optimal irrigation water allocation for pressurized irrigation system using water balance approach, learning machines, and remotely sensed data," Agricultural Water Management, Elsevier, vol. 153(C), pages 42-50.
    2. Luo, Yufeng & Chang, Xiaomin & Peng, Shizhang & Khan, Shahbaz & Wang, Weiguang & Zheng, Qiang & Cai, Xueliang, 2014. "Short-term forecasting of daily reference evapotranspiration using the Hargreaves–Samani model and temperature forecasts," Agricultural Water Management, Elsevier, vol. 136(C), pages 42-51.
    3. Dhivya Elavarasan & Durai Raj Vincent P M & Kathiravan Srinivasan & Chuan-Yu Chang, 2020. "A Hybrid CFS Filter and RF-RFE Wrapper-Based Feature Extraction for Enhanced Agricultural Crop Yield Prediction Modeling," Agriculture, MDPI, vol. 10(9), pages 1-27, September.
    4. Sen Guo & Haoran Zhao & Huiru Zhao, 2017. "A New Hybrid Wind Power Forecaster Using the Beveridge-Nelson Decomposition Method and a Relevance Vector Machine Optimized by the Ant Lion Optimizer," Energies, MDPI, vol. 10(7), pages 1-20, July.
    5. Malik, Anurag & Jamei, Mehdi & Ali, Mumtaz & Prasad, Ramendra & Karbasi, Masoud & Yaseen, Zaher Mundher, 2022. "Multi-step daily forecasting of reference evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge regression feature selection," Agricultural Water Management, Elsevier, vol. 272(C).
    6. Granata, Francesco & Di Nunno, Fabio, 2021. "Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks," Agricultural Water Management, Elsevier, vol. 255(C).
    7. Kelechi Igwe & Vaishali Sharda & Trevor Hefley, 2023. "Evaluating the Impact of Future Seasonal Climate Extremes on Crop Evapotranspiration of Maize in Western Kansas Using a Machine Learning Approach," Land, MDPI, vol. 12(8), pages 1-26, July.
    8. Traore, Seydou & Luo, Yufeng & Fipps, Guy, 2016. "Deployment of artificial neural network for short-term forecasting of evapotranspiration using public weather forecast restricted messages," Agricultural Water Management, Elsevier, vol. 163(C), pages 363-379.
    9. Masoud Karbasi, 2018. "Forecasting of Multi-Step Ahead Reference Evapotranspiration Using Wavelet- Gaussian Process Regression Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 1035-1052, February.
    10. Edwin Pino-Vargas & Edgar Taya-Acosta & Eusebio Ingol-Blanco & Alfonso Torres-Rúa, 2022. "Deep Machine Learning for Forecasting Daily Potential Evapotranspiration in Arid Regions, Case: Atacama Desert Header," Agriculture, MDPI, vol. 12(12), pages 1-15, November.
    11. Granata, Francesco, 2019. "Evapotranspiration evaluation models based on machine learning algorithms—A comparative study," Agricultural Water Management, Elsevier, vol. 217(C), pages 303-315.
    12. Zhang, Lei & Zhao, Xin & Zhu, Ge & He, Jun & Chen, Jian & Chen, Zhicheng & Traore, Seydou & Liu, Junguo & Singh, Vijay P., 2023. "Short-term daily reference evapotranspiration forecasting using temperature-based deep learning models in different climate zones in China," Agricultural Water Management, Elsevier, vol. 289(C).
    13. Yan, Shicheng & Wu, Lifeng & Fan, Junliang & Zhang, Fucang & Zou, Yufeng & Wu, You, 2021. "A novel hybrid WOA-XGB model for estimating daily reference evapotranspiration using local and external meteorological data: Applications in arid and humid regions of China," Agricultural Water Management, Elsevier, vol. 244(C).
    14. Valipour, Mohammad & Khoshkam, Helaleh & Bateni, Sayed M. & Jun, Changhyun & Band, Shahab S., 2023. "Hybrid machine learning and deep learning models for multi-step-ahead daily reference evapotranspiration forecasting in different climate regions across the contiguous United States," Agricultural Water Management, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:98:y:2011:i:4:p:553-562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.