IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v291y2024ics0378377423004924.html
   My bibliography  Save this article

Evaluating the ability of deep learning on actual daily evapotranspiration estimation over the heterogeneous surfaces

Author

Listed:
  • Feng, Jiaojiao
  • Wang, Weizhen
  • Xu, Feinan
  • Wang, Shengtang

Abstract

Evapotranspiration (ET) is one of the most critical components in hydrological processes and is of great importance to water resource management. Data-oriented deep learning (DL) has been increasingly utilized to forecast hydrological variables over recent years. In this study, the ability of the widely-used DL methods, including long short-term memory (LSTM), bi-directional LSTM (BiLSTM), deep neural network (DNN), and deep belief network (DBN), on the estimation of actual daily ET over the heterogeneous surfaces, was investigated using four groups of experiments. Firstly, the influence of the different input variables on the above DL-based ET model over the various land cover types was explored and analyzed. The results showed that the DL-based ET model can accurately estimate the actual daily ET over the heterogeneous surfaces using a few key conventional observations, i.e., net radiation (Rn), relative humidity (RH), air temperature (Ta), and wind speed (u), as well as soil water content (SWC). However, the performance of the DL-based ET model varied from the different combinations of input variables. SWC was crucial to the estimation of ET, with RMSD decreased from 0.94 to 0.76 mm d−1 when SWC was added to the DL model. Then, the comparison of the four DL-based ET model performances was done. The minor difference in ET estimates was caused by the algorithm differences between LSTM, BiLSTM, DNN, and DBN. Based on the above work, a unified DL-based ET model over the heterogeneous surfaces was developed. The unified DL-based model improved the applicability of DL in ET estimation although it underperformed the separate DL-based model. Finally, the comparison of the performance of the TSEB model and DL method was done. Evaluated with the results of heterogeneous surface, the DL-based model had a better accuracy with a MAPE of 16 – 50%; while the TSEB model had a larger MAPE of 20 – 55%. The results of this research suggest that the DL-based ET model is a promising alternative for the simulation of the daily ET over the heterogeneous surfaces.

Suggested Citation

  • Feng, Jiaojiao & Wang, Weizhen & Xu, Feinan & Wang, Shengtang, 2024. "Evaluating the ability of deep learning on actual daily evapotranspiration estimation over the heterogeneous surfaces," Agricultural Water Management, Elsevier, vol. 291(C).
  • Handle: RePEc:eee:agiwat:v:291:y:2024:i:c:s0378377423004924
    DOI: 10.1016/j.agwat.2023.108627
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423004924
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108627?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:291:y:2024:i:c:s0378377423004924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.