IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v255y2021ics037837742100305x.html
   My bibliography  Save this article

Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks

Author

Listed:
  • Granata, Francesco
  • Di Nunno, Fabio

Abstract

Accurate ahead evapotranspiration forecasting is crucial for irrigation planning, for wetlands, agricultural and forest habitats preservation, and for water resource management. Deep learning algorithms can be used to develop effective forecasting models of ahead evapotranspiration. In this study, three Recurrent Neural Network-based models were built for the prediction of short term ahead actual evapotranspiration. Two variants of each model were developed changing the employed algorithm, selecting between long short-term memory (LSTM) and nonlinear autoregressive network with exogenous inputs (NARX), while the modeling was performed in the context of an ensemble approach. The prediction models were trained and tested using data from two sites with different climates: Cypress Swamp, southern Florida, and Kobeh Valley, central Nevada. With reference to the subtropical climatic conditions of South Florida, LSTM models proved to be more accurate than NARX models, while some exogenous variables such as sensible heat flux and relative humidity did not affect the results significantly. An increase of the forecast horizon from 1 to 7 days resulted in a slight reduction in the accuracy of both the LSTM- and NARX based models. Considering instead the semi-arid climate of Central Nevada, NARX models generally provided more accurate results, which were only slightly affected by relative humidity, sensible heat flux, and forecast horizon. On the other hand, LSTM models performance decayed if sensible heat flux and relative humidity were neglected, and if the forecast horizon was increased from 1 to 7 days. Deep learning-based models can provide very accurate predictions of actual evapotranspiration, but the performance of the models can be significantly affected by local climatic conditions.

Suggested Citation

  • Granata, Francesco & Di Nunno, Fabio, 2021. "Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks," Agricultural Water Management, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s037837742100305x
    DOI: 10.1016/j.agwat.2021.107040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742100305X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Torres, Alfonso F. & Walker, Wynn R. & McKee, Mac, 2011. "Forecasting daily potential evapotranspiration using machine learning and limited climatic data," Agricultural Water Management, Elsevier, vol. 98(4), pages 553-562, February.
    2. Yamaç, Sevim Seda & Todorovic, Mladen, 2020. "Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data," Agricultural Water Management, Elsevier, vol. 228(C).
    3. Granata, Francesco, 2019. "Evapotranspiration evaluation models based on machine learning algorithms—A comparative study," Agricultural Water Management, Elsevier, vol. 217(C), pages 303-315.
    4. Yufeng Luo & Seydou Traore & Xinwei Lyu & Weiguang Wang & Ying Wang & Yongyu Xie & Xiyun Jiao & Guy Fipps, 2015. "Medium Range Daily Reference Evapotranspiration Forecasting by Using ANN and Public Weather Forecasts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3863-3876, August.
    5. Anapalli, Saseendran S. & Fisher, Daniel K. & Reddy, Krishna N. & Wagle, Pradeep & Gowda, Prasanna H. & Sui, Ruixiu, 2018. "Quantifying soybean evapotranspiration using an eddy covariance approach," Agricultural Water Management, Elsevier, vol. 209(C), pages 228-239.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chia, Min Yan & Huang, Yuk Feng & Koo, Chai Hoon, 2022. "Resolving data-hungry nature of machine learning reference evapotranspiration estimating models using inter-model ensembles with various data management schemes," Agricultural Water Management, Elsevier, vol. 261(C).
    2. Xing, Liwen & Cui, Ningbo & Liu, Chunwei & Zhao, Lu & Guo, Li & Du, Taisheng & Zhan, Cun & Wu, Zongjun & Wen, Shenglin & Jiang, Shouzheng, 2022. "Estimation of daily apple tree transpiration in the Loess Plateau region of China using deep learning models," Agricultural Water Management, Elsevier, vol. 273(C).
    3. Malik, Anurag & Jamei, Mehdi & Ali, Mumtaz & Prasad, Ramendra & Karbasi, Masoud & Yaseen, Zaher Mundher, 2022. "Multi-step daily forecasting of reference evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge regression feature selection," Agricultural Water Management, Elsevier, vol. 272(C).
    4. Fabio Di Nunno & Marco De Matteo & Giovanni Izzo & Francesco Granata, 2023. "A Combined Clustering and Trends Analysis Approach for Characterizing Reference Evapotranspiration in Veneto," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
    5. Fabio Di Nunno & Francesco Granata & Quoc Bao Pham & Giovanni de Marinis, 2022. "Precipitation Forecasting in Northern Bangladesh Using a Hybrid Machine Learning Model," Sustainability, MDPI, vol. 14(5), pages 1-21, February.
    6. Valipour, Mohammad & Khoshkam, Helaleh & Bateni, Sayed M. & Jun, Changhyun & Band, Shahab S., 2023. "Hybrid machine learning and deep learning models for multi-step-ahead daily reference evapotranspiration forecasting in different climate regions across the contiguous United States," Agricultural Water Management, Elsevier, vol. 283(C).
    7. Yan Guo & Wei Tang & Guanghua Hou & Fei Pan & Yubo Wang & Wei Wang, 2021. "Research on Precipitation Forecast Based on LSTM–CP Combined Model," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
    8. Di Nunno, Fabio & Granata, Francesco, 2023. "Future trends of reference evapotranspiration in Sicily based on CORDEX data and Machine Learning algorithms," Agricultural Water Management, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Juan & Deng, Zhen & Ines, Amor V.M. & Wu, Junbin & Rasu, Eeswaran, 2020. "Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM)," Agricultural Water Management, Elsevier, vol. 242(C).
    2. Phon Sheng Hou & Lokman Mohd Fadzil & Selvakumar Manickam & Mahmood A. Al-Shareeda, 2023. "Vector Autoregression Model-Based Forecasting of Reference Evapotranspiration in Malaysia," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    3. Malik, Anurag & Jamei, Mehdi & Ali, Mumtaz & Prasad, Ramendra & Karbasi, Masoud & Yaseen, Zaher Mundher, 2022. "Multi-step daily forecasting of reference evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge regression feature selection," Agricultural Water Management, Elsevier, vol. 272(C).
    4. Yan, Shicheng & Wu, Lifeng & Fan, Junliang & Zhang, Fucang & Zou, Yufeng & Wu, You, 2021. "A novel hybrid WOA-XGB model for estimating daily reference evapotranspiration using local and external meteorological data: Applications in arid and humid regions of China," Agricultural Water Management, Elsevier, vol. 244(C).
    5. Kelechi Igwe & Vaishali Sharda & Trevor Hefley, 2023. "Evaluating the Impact of Future Seasonal Climate Extremes on Crop Evapotranspiration of Maize in Western Kansas Using a Machine Learning Approach," Land, MDPI, vol. 12(8), pages 1-26, July.
    6. Ohana-Levi, Noa & Ben-Gal, Alon & Munitz, Sarel & Netzer, Yishai, 2022. "Grapevine crop evapotranspiration and crop coefficient forecasting using linear and non-linear multiple regression models," Agricultural Water Management, Elsevier, vol. 262(C).
    7. Traore, Seydou & Luo, Yufeng & Fipps, Guy, 2016. "Deployment of artificial neural network for short-term forecasting of evapotranspiration using public weather forecast restricted messages," Agricultural Water Management, Elsevier, vol. 163(C), pages 363-379.
    8. Granata, Francesco, 2019. "Evapotranspiration evaluation models based on machine learning algorithms—A comparative study," Agricultural Water Management, Elsevier, vol. 217(C), pages 303-315.
    9. Yang, Yang & Cui, Yuanlai & Luo, Yufeng & Lyu, Xinwei & Traore, Seydou & Khan, Shahbaz & Wang, Weiguang, 2016. "Short-term forecasting of daily reference evapotranspiration using the Penman-Monteith model and public weather forecasts," Agricultural Water Management, Elsevier, vol. 177(C), pages 329-339.
    10. Sen Guo & Haoran Zhao & Huiru Zhao, 2017. "A New Hybrid Wind Power Forecaster Using the Beveridge-Nelson Decomposition Method and a Relevance Vector Machine Optimized by the Ant Lion Optimizer," Energies, MDPI, vol. 10(7), pages 1-20, July.
    11. Ali Barzkar & Mohammad Najafzadeh & Farshad Homaei, 2022. "Evaluation of drought events in various climatic conditions using data-driven models and a reliability-based probabilistic model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1931-1952, February.
    12. Patricio Vladimir Méndez-Zambrano & Luis Patricio Tierra Pérez & Rogelio Estalin Ureta Valdez & Ángel Patricio Flores Orozco, 2023. "Technological Innovations for Agricultural Production from an Environmental Perspective: A Review," Sustainability, MDPI, vol. 15(22), pages 1-15, November.
    13. Fabio Di Nunno & Marco De Matteo & Giovanni Izzo & Francesco Granata, 2023. "A Combined Clustering and Trends Analysis Approach for Characterizing Reference Evapotranspiration in Veneto," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
    14. Beáta Novotná & Ľuboš Jurík & Ján Čimo & Jozef Palkovič & Branislav Chvíla & Vladimír Kišš, 2022. "Machine Learning for Pan Evaporation Modeling in Different Agroclimatic Zones of the Slovak Republic (Macro-Regions)," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
    15. Yamaç, Sevim Seda, 2021. "Artificial intelligence methods reliably predict crop evapotranspiration with different combinations of meteorological data for sugar beet in a semiarid area," Agricultural Water Management, Elsevier, vol. 254(C).
    16. Mohammadi, Babak & Mehdizadeh, Saeid, 2020. "Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 237(C).
    17. Seydou Traore & Yufeng Luo & Guy Fipps, 2017. "Gene-Expression Programming for Short-Term Forecasting of Daily Reference Evapotranspiration Using Public Weather Forecast Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4891-4908, December.
    18. Manish Kumar & Anuradha Kumari & Daniel Prakash Kushwaha & Pravendra Kumar & Anurag Malik & Rawshan Ali & Alban Kuriqi, 2020. "Estimation of Daily Stage–Discharge Relationship by Using Data-Driven Techniques of a Perennial River, India," Sustainability, MDPI, vol. 12(19), pages 1-21, September.
    19. Hamzeh F. Assous & Hazem AL-Najjar & Nadia Al-Rousan & Dania AL-Najjar, 2023. "Developing a Sustainable Machine Learning Model to Predict Crop Yield in the Gulf Countries," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    20. Jamei, Mehdi & Maroufpoor, Saman & Aminpour, Younes & Karbasi, Masoud & Malik, Anurag & Karimi, Bakhtiar, 2022. "Developing hybrid data-intelligent method using Boruta-random forest optimizer for simulation of nitrate distribution pattern," Agricultural Water Management, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s037837742100305x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.