IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v305y2024ics0378377424004566.html
   My bibliography  Save this article

Comparison of transformer, LSTM and coupled algorithms for soil moisture prediction in shallow-groundwater-level areas with interpretability analysis

Author

Listed:
  • Wang, Yue
  • Zha, Yuanyuan

Abstract

Accurate quantification of soil moisture is essential for understanding water and energy exchanges between the atmosphere and the Earth’s surface, as well as for agricultural applications. Predicting soil moisture content is vital for efficient water management, irrigation scheduling, and drought monitoring. Traditional forecasting methods, such as numerical regression models, often struggle due to various influencing factors and poor observation data quality. In contrast, deep learning algorithms, particularly recurrent and convolutional neural networks, show promise in predicting nonlinear data like soil moisture. This study focuses on shallow groundwater regions, using groundwater levels and meteorological data as features while coupling the Transformer model with other neural network structures. We investigate the potential of attention-based neural networks for soil moisture time series prediction. Our findings demonstrate that the Transformer model achieves an average R2 of 0.523 across different time lags, outperforming the LSTM model with an R2 of 0.485. The introduction of LSTM enhances the Transformer’s stability in handling temporal changes. Additionally, we verified the importance of groundwater for soil moisture prediction. This study introduces new methods for soil moisture prediction and offers new insights and recommendations for the development of artificial intelligence technology for soil moisture prediction.

Suggested Citation

  • Wang, Yue & Zha, Yuanyuan, 2024. "Comparison of transformer, LSTM and coupled algorithms for soil moisture prediction in shallow-groundwater-level areas with interpretability analysis," Agricultural Water Management, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004566
    DOI: 10.1016/j.agwat.2024.109120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424004566
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu Cai & Wengang Zheng & Xin Zhang & Lili Zhangzhong & Xuzhang Xue, 2019. "Research on soil moisture prediction model based on deep learning," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-19, April.
    2. Xu, Xu & Huang, Guanhua & Qu, Zhongyi & Pereira, Luis S., 2010. "Assessing the groundwater dynamics and impacts of water saving in the Hetao Irrigation District, Yellow River basin," Agricultural Water Management, Elsevier, vol. 98(2), pages 301-313, December.
    3. Granata, Francesco & Di Nunno, Fabio, 2021. "Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks," Agricultural Water Management, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    2. Fuentes, Sigfredo & Ortega-Farías, Samuel & Carrasco-Benavides, Marcos & Tongson, Eden & Gonzalez Viejo, Claudia, 2024. "Actual evapotranspiration and energy balance estimation from vineyards using micro-meteorological data and machine learning modeling," Agricultural Water Management, Elsevier, vol. 297(C).
    3. Fabio Di Nunno & Marco De Matteo & Giovanni Izzo & Francesco Granata, 2023. "A Combined Clustering and Trends Analysis Approach for Characterizing Reference Evapotranspiration in Veneto," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
    4. Huang, Ya & Zhang, Zhe & Li, Zhenhua & Dai, Danqiong & Li, Yanping, 2022. "Evaluation of water use efficiency and optimal irrigation quantity of spring maize in Hetao Irrigation District using the Noah-MP Land Surface Model," Agricultural Water Management, Elsevier, vol. 264(C).
    5. Zhang, Yixiao & He, Tao & Liang, Shunlin & Zhao, Zhongguo, 2023. "A framework for estimating actual evapotranspiration through spatial heterogeneity-based machine learning approaches," Agricultural Water Management, Elsevier, vol. 289(C).
    6. Vahidi, Milad & Shafian, Sanaz & Frame, William Hunter, 2025. "Depth-specific soil moisture estimation in vegetated corn fields using a canopy-informed model: A fusion of RGB-thermal drone data and machine learning," Agricultural Water Management, Elsevier, vol. 307(C).
    7. Du, Ruiqi & Chen, Junying & Zhang, Zhitao & Chen, Yinwen & He, Yujie & Yin, Haoyuan, 2022. "Simultaneous estimation of surface soil moisture and salinity during irrigation with the moisture-salinity-dependent spectral response model," Agricultural Water Management, Elsevier, vol. 265(C).
    8. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    9. Xue, Jingyuan & Guan, Huade & Huo, Zailin & Wang, Fengxin & Huang, Guanhua & Boll, Jan, 2017. "Water saving practices enhance regional efficiency of water consumption and water productivity in an arid agricultural area with shallow groundwater," Agricultural Water Management, Elsevier, vol. 194(C), pages 78-89.
    10. Guanfang Sun & Yan Zhu & Zhaoliang Gao & Jinzhong Yang & Zhongyi Qu & Wei Mao & Jingwei Wu, 2022. "Spatiotemporal Patterns and Key Driving Factors of Soil Salinity in Dry and Wet Years in an Arid Agricultural Area with Shallow Groundwater Table," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    11. Feng, Zhuangzhuang & Miao, Qingfeng & Shi, Haibin & Feng, Weiying & Li, Xianyue & Yan, Jianwen & Liu, Meihan & Sun, Wei & Dai, Liping & Liu, Jing, 2023. "Simulation of water balance and irrigation strategy of typical sand-layered farmland in the Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 280(C).
    12. Xing, Liwen & Cui, Ningbo & Liu, Chunwei & Zhao, Lu & Guo, Li & Du, Taisheng & Zhan, Cun & Wu, Zongjun & Wen, Shenglin & Jiang, Shouzheng, 2022. "Estimation of daily apple tree transpiration in the Loess Plateau region of China using deep learning models," Agricultural Water Management, Elsevier, vol. 273(C).
    13. Miao, Qingfeng & Rosa, Ricardo D. & Shi, Haibin & Paredes, Paula & Zhu, Li & Dai, Jiaxin & Gonçalves, José M. & Pereira, Luis S., 2016. "Modeling water use, transpiration and soil evaporation of spring wheat–maize and spring wheat–sunflower relay intercropping using the dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 165(C), pages 211-229.
    14. Liu, Xiuxia & Ma, Shimeng & Fang, Yu & Wang, Sufen & Guo, Ping, 2023. "A novel approach to identify crop irrigation priority," Agricultural Water Management, Elsevier, vol. 275(C).
    15. Liu, Zhongyi & Chen, Hang & Huo, Zailin & Wang, Fengxin & Shock, Clinton C., 2016. "Analysis of the contribution of groundwater to evapotranspiration in an arid irrigation district with shallow water table," Agricultural Water Management, Elsevier, vol. 171(C), pages 131-141.
    16. Tiago B. Ramos & Meihan Liu & Haibin Shi & Paula Paredes & Luis S. Pereira, 2024. "Leaching Efficiency During Autumn Irrigation in China’s Arid Hetao Plain as Influenced by the Depth of Shallow Saline Groundwater and Irrigation Depth, Using Data from Static Water-Table Lysimeters an," Land, MDPI, vol. 13(11), pages 1-11, October.
    17. Fang Yang & Rui Cen & Weiying Feng & Jing Liu & Zhongyi Qu & Qingfeng Miao, 2020. "Effects of Super-Absorbent Polymer on Soil Remediation and Crop Growth in Arid and Semi-Arid Areas," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    18. Gao, Xiaoyu & Huo, Zailin & Xu, Xu & Qu, Zhongyi & Huang, Guanhua & Tang, Pengcheng & Bai, Yining, 2018. "Shallow groundwater plays an important role in enhancing irrigation water productivity in an arid area: The perspective from a regional agricultural hydrology simulation," Agricultural Water Management, Elsevier, vol. 208(C), pages 43-58.
    19. Xu, Xu & Huang, Guanhua & Sun, Chen & Pereira, Luis S. & Ramos, Tiago B. & Huang, Quanzhong & Hao, Yuanyuan, 2013. "Assessing the effects of water table depth on water use, soil salinity and wheat yield: Searching for a target depth for irrigated areas in the upper Yellow River basin," Agricultural Water Management, Elsevier, vol. 125(C), pages 46-60.
    20. Liu, Geng & Wang, Chaozi & Wang, Xianghao & Huo, Zailin & Liu, Jiarong, 2022. "Growing season water and salt migration between abandoned lands and adjacent croplands in arid and semi-arid irrigation areas in shallow water table environments," Agricultural Water Management, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.