IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7825-d417318.html
   My bibliography  Save this article

Effects of Super-Absorbent Polymer on Soil Remediation and Crop Growth in Arid and Semi-Arid Areas

Author

Listed:
  • Fang Yang

    (State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

  • Rui Cen

    (Department of Irrigation and Drainage, China Institute of Water Resources and Hydropower Research, Beijing 100089, China)

  • Weiying Feng

    (School of Space and Environment, Beihang University, Beijing 100191, China
    Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China)

  • Jing Liu

    (Environment Research Institute, Shandong University, Qingdao 266237, China)

  • Zhongyi Qu

    (College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China)

  • Qingfeng Miao

    (College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China)

Abstract

The water-retaining and yield-increasing capacity of super-absorbent polymer (SAP) are essential for soil remediation in arid and semi-arid areas. Therefore, it is of great significance to investigate the influencing factors and mechanisms of SAP effects on soil environments and crop growth for the precise management of agricultural water-saving irrigation. In this study, we adopted SAP as a soil conditioner and monitored changes in soil temperature, photosynthetic rate, leaf transpiration rate, chlorophyll, crop growth indexes (plant height, stem diameter, leaf area index, dry matter accumulation), and yield under different SAP doses during the growth stage of maize, on the basis of which the improvement mechanism of SAP in arid and semi-arid soil was analyzed. The results demonstrated the following: (1) 45 kg/hm 2 of SAP application could increase the temperature of the soil layer, effectively reduce the diurnal temperature variation of the soil surface, and promote the stable growth of maize; (2) when different SAP doses were applied, the leaf surface temperature of maize increased by 0.95 °C on average. In particular, when 135 kg/hm 2 of SAP was applied, the leaf surface temperature increased by 1.55 °C; (3) SAP could promote the photosynthetic rate of maize. In addition, the plant height, leaf area index, and dry matter accumulation of maize gradually increased with an increasing amount of SAP; (4) the application of SAP not only increased the grain row number, ear row number, and average 100-seed weight, but also increased the crop yield by nearly 6%. The application of SAP demonstrated a comprehensive utility (redistribution of soil water and temperature, synergy between SAPs and plants), which suggests that the most basic goal, to ensure socio-economic and ecological sustainability in dryland systems, was obtained.

Suggested Citation

  • Fang Yang & Rui Cen & Weiying Feng & Jing Liu & Zhongyi Qu & Qingfeng Miao, 2020. "Effects of Super-Absorbent Polymer on Soil Remediation and Crop Growth in Arid and Semi-Arid Areas," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7825-:d:417318
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7825/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7825/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Xu & Huang, Guanhua & Qu, Zhongyi & Pereira, Luis S., 2010. "Assessing the groundwater dynamics and impacts of water saving in the Hetao Irrigation District, Yellow River basin," Agricultural Water Management, Elsevier, vol. 98(2), pages 301-313, December.
    2. United Nations, 2016. "The Sustainable Development Goals 2016," Working Papers id:11456, eSocialSciences.
    3. Saskia Visser & Saskia Keesstra & Gilbert Maas & Margot de Cleen & Co Molenaar, 2019. "Soil as a Basis to Create Enabling Conditions for Transitions Towards Sustainable Land Management as a Key to Achieve the SDGs by 2030," Sustainability, MDPI, vol. 11(23), pages 1-19, November.
    4. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Chenhao & Zhang, Lina & Zhang, Qiang & Wang, Jun & Wang, Shengsen & Zhang, Min & Liu, Zhiguang, 2022. "The effects of bio-based superabsorbent polymers on the water/nutrient retention characteristics and agricultural productivity of a saline soil from the Yellow River Basin, China," Agricultural Water Management, Elsevier, vol. 261(C).
    2. Hazem S. Elshafie & Ippolito Camele, 2021. "Applications of Absorbent Polymers for Sustainable Plant Protection and Crop Yield," Sustainability, MDPI, vol. 13(6), pages 1-12, March.
    3. Weiying Feng & Jiayue Gao & Rui Cen & Fang Yang & Zhongqi He & Jin Wu & Qingfeng Miao & Haiqing Liao, 2020. "Effects of Polyacrylamide-Based Super Absorbent Polymer and Corn Straw Biochar on the Arid and Semi-Arid Salinized Soil," Agriculture, MDPI, vol. 10(11), pages 1-17, November.
    4. Zheng, Huifang & Mei, Peipei & Wang, Wending & Yin, Yulong & Li, Haojie & Zheng, Mengyao & Ou, Xingqi & Cui, Zhenling, 2023. "Effects of super absorbent polymer on crop yield, water productivity and soil properties: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    2. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    3. Lucio Di Matteo & Alessandro Spigarelli & Sofia Ortenzi, 2020. "Processes in the Unsaturated Zone by Reliable Soil Water Content Estimation: Indications for Soil Water Management from a Sandy Soil Experimental Field in Central Italy," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    4. Shahab S. Band & Saeid Janizadeh & Sunil Saha & Kaustuv Mukherjee & Saeid Khosrobeigi Bozchaloei & Artemi Cerdà & Manouchehr Shokri & Amirhosein Mosavi, 2020. "Evaluating the Efficiency of Different Regression, Decision Tree, and Bayesian Machine Learning Algorithms in Spatial Piping Erosion Susceptibility Using ALOS/PALSAR Data," Land, MDPI, vol. 9(10), pages 1-23, September.
    5. Bilal Aslam & Ahsen Maqsoom & Shahzaib & Zaheer Abbas Kazmi & Mahmoud Sodangi & Fahad Anwar & Muhammad Hassan Bakri & Rana Faisal Tufail & Danish Farooq, 2020. "Effects of Landscape Changes on Soil Erosion in the Built Environment: Application of Geospatial-Based RUSLE Technique," Sustainability, MDPI, vol. 12(15), pages 1-20, July.
    6. Manuel López-Vicente & Elena Calvo-Seas & Sara Álvarez & Artemi Cerdà, 2020. "Effectiveness of Cover Crops to Reduce Loss of Soil Organic Matter in a Rainfed Vineyard," Land, MDPI, vol. 9(7), pages 1-16, July.
    7. Theodora Angelopoulou & Athanasios Balafoutis & George Zalidis & Dionysis Bochtis, 2020. "From Laboratory to Proximal Sensing Spectroscopy for Soil Organic Carbon Estimation—A Review," Sustainability, MDPI, vol. 12(2), pages 1-24, January.
    8. Yun Xue & Bin Zou & Yimin Wen & Yulong Tu & Liwei Xiong, 2020. "Hyperspectral Inversion of Chromium Content in Soil Using Support Vector Machine Combined with Lab and Field Spectra," Sustainability, MDPI, vol. 12(11), pages 1-16, May.
    9. Li, Chunxia & Li, Youjun & Fu, Guozhan & Huang, Ming & Ma, Chao & Wang, Hezheng & Zhang, Jun, 2020. "Cultivation and mulching materials strategies to enhance soil water status, net ecosystem and crop water productivity of winter wheat in semi-humid regions," Agricultural Water Management, Elsevier, vol. 239(C).
    10. Artemi Cerdà & Jesús Rodrigo-Comino, 2021. "Regional Farmers’ Perception and Societal Issues in Vineyards Affected by High Erosion Rates," Land, MDPI, vol. 10(2), pages 1-18, February.
    11. Yaming Tang & Yinqiang Bi & Zizheng Guo & Zhengguo Li & Wei Feng & Jiayun Wang & Yane Li & Hongna Ma, 2021. "A Novel Method for Obtaining the Loess Structural Index from Computed Tomography Images: A Case Study from the Lvliang Mountains of the Loess Plateau (China)," Land, MDPI, vol. 10(3), pages 1-15, March.
    12. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Ecker, Olivier & Hatzenbuehler, Patrick L. & Mahrt, Kristi, 2018. "Transforming agriculture for improving food and nutrition security among Nigerian farm households," NSSP working papers 56, International Food Policy Research Institute (IFPRI).
    14. Zhang, Shulin & Su, Xiaoling & Singh, Vijay P & Ayantobo, Olusola Olaitan & Xie, Juan, 2018. "Logarithmic Mean Divisia Index (LMDI) decomposition analysis of changes in agricultural water use: a case study of the middle reaches of the Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 208(C), pages 422-430.
    15. El-Saied E. Metwaly & Hatim M. Al-Yasi & Esmat F. Ali & Hamada A. Farouk & Saad Farouk, 2022. "Deteriorating Harmful Effects of Drought in Cucumber by Spraying Glycinebetaine," Agriculture, MDPI, vol. 12(12), pages 1-16, December.
    16. Yang, Danni & Li, Sien & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Mao, Xiaomin & Tong, Ling & Hao, Xinmei & Ding, Risheng & Niu, Jun, 2020. "Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    17. Claudia Hanson & Sanni Kujala & Peter Waiswa & Tanya Marchant & Joanna Schellenberg, 2017. "Community-based approaches for neonatal survival: Meta-analyses of randomized trial data," WIDER Working Paper Series wp-2017-137, World Institute for Development Economic Research (UNU-WIDER).
    18. Eugenia Ganea & Valentina Bodrug-Lungu, 2018. "Addressing Inequality in Vocational/ Technical Education by Eliminating Gender Bias," Revista romaneasca pentru educatie multidimensionala - Journal for Multidimensional Education, Editura Lumen, Department of Economics, vol. 10(4), pages 136-155, December.
    19. Gallopín, Gilberto, 2018. "Back to the future," Energy Policy, Elsevier, vol. 123(C), pages 318-324.
    20. Pandey, Shanta, 2017. "Persistent nature of child marriage among women even when it is illegal: The case of Nepal," Children and Youth Services Review, Elsevier, vol. 73(C), pages 242-247.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7825-:d:417318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.