IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i3p291-d515598.html
   My bibliography  Save this article

A Novel Method for Obtaining the Loess Structural Index from Computed Tomography Images: A Case Study from the Lvliang Mountains of the Loess Plateau (China)

Author

Listed:
  • Yaming Tang

    (Xi’an Center of China Geological Survey, Xi’an 710054, China
    Key Laboratory for Geo-hazards in Loess Area, Ministry of Natural Resources, Xi’an 710054, China)

  • Yinqiang Bi

    (Key Laboratory for Geo-hazards in Loess Area, Ministry of Natural Resources, Xi’an 710054, China
    China Jikan Research Institute of Engineering Investigations and Design Co., Ltd., Xi’an 710043, China)

  • Zizheng Guo

    (Faculty of Engineering, China University of Geosciences, Wuhan 430074, China)

  • Zhengguo Li

    (Xi’an Center of China Geological Survey, Xi’an 710054, China
    Key Laboratory for Geo-hazards in Loess Area, Ministry of Natural Resources, Xi’an 710054, China)

  • Wei Feng

    (Xi’an Center of China Geological Survey, Xi’an 710054, China
    Key Laboratory for Geo-hazards in Loess Area, Ministry of Natural Resources, Xi’an 710054, China)

  • Jiayun Wang

    (Xi’an Center of China Geological Survey, Xi’an 710054, China
    Key Laboratory for Geo-hazards in Loess Area, Ministry of Natural Resources, Xi’an 710054, China)

  • Yane Li

    (Xi’an Center of China Geological Survey, Xi’an 710054, China
    Key Laboratory for Geo-hazards in Loess Area, Ministry of Natural Resources, Xi’an 710054, China)

  • Hongna Ma

    (Xi’an Center of China Geological Survey, Xi’an 710054, China
    Key Laboratory for Geo-hazards in Loess Area, Ministry of Natural Resources, Xi’an 710054, China)

Abstract

The structural index is an important quantitative parameter for revealing the structural properties of loess. However, there is no a widely accepted measurement method for structural index at present. This study aims at presenting a novel method for obtaining the loess structural index (LSI), based on the application of computed tomography (CT) scanning techniques and laboratory physico-mechanical tests. The mountainous area of Lvliang in northwest China was taken as the study area, and Late Pleistocene loess samples were taken from various sites in the region. Several physical parameters were first measured using laboratory tests, including dry density, pore ratio, and liquidity index. CT scanning was used to observe sample microstructures, and a mathematical relationship was established between CT image parameters and the physical property indices, through three dimensions (3D) reconstruction and slice porosity analysis. The results revealed that LSI can be expressed as a non-linear function related to CT image parameters, dry density, and the liquidity index of the loess. Compared with traditional calculation methods, this novel technique calculates the LSI by using an empirical formula, which is less labor-intensive. Such results indicate that the method warrants wide application in the future.

Suggested Citation

  • Yaming Tang & Yinqiang Bi & Zizheng Guo & Zhengguo Li & Wei Feng & Jiayun Wang & Yane Li & Hongna Ma, 2021. "A Novel Method for Obtaining the Loess Structural Index from Computed Tomography Images: A Case Study from the Lvliang Mountains of the Loess Plateau (China)," Land, MDPI, vol. 10(3), pages 1-15, March.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:3:p:291-:d:515598
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/3/291/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/3/291/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rui Wang & Zhibao Dong & Zhengchao Zhou & Peipei Wang, 2019. "Temporal Variation in Preferential Water Flow during Natural Vegetation Restoration on Abandoned Farmland in the Loess Plateau of China," Land, MDPI, vol. 8(12), pages 1-16, December.
    2. Y. Tang & Q. Xue & Z. Li & W. Feng, 2015. "Three modes of rainfall infiltration inducing loess landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 137-150, October.
    3. Yongsheng Wang & Yuheng Li & Yurui Li, 2020. "Land Engineering Consolidates Degraded Sandy Land for Agricultural Development in the Largest Sandy Land of China," Land, MDPI, vol. 9(6), pages 1-11, June.
    4. United Nations, 2016. "The Sustainable Development Goals 2016," Working Papers id:11456, eSocialSciences.
    5. Saskia Visser & Saskia Keesstra & Gilbert Maas & Margot de Cleen & Co Molenaar, 2019. "Soil as a Basis to Create Enabling Conditions for Transitions Towards Sustainable Land Management as a Key to Achieve the SDGs by 2030," Sustainability, MDPI, vol. 11(23), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucio Di Matteo & Alessandro Spigarelli & Sofia Ortenzi, 2020. "Processes in the Unsaturated Zone by Reliable Soil Water Content Estimation: Indications for Soil Water Management from a Sandy Soil Experimental Field in Central Italy," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    2. Shahab S. Band & Saeid Janizadeh & Sunil Saha & Kaustuv Mukherjee & Saeid Khosrobeigi Bozchaloei & Artemi Cerdà & Manouchehr Shokri & Amirhosein Mosavi, 2020. "Evaluating the Efficiency of Different Regression, Decision Tree, and Bayesian Machine Learning Algorithms in Spatial Piping Erosion Susceptibility Using ALOS/PALSAR Data," Land, MDPI, vol. 9(10), pages 1-23, September.
    3. Bilal Aslam & Ahsen Maqsoom & Shahzaib & Zaheer Abbas Kazmi & Mahmoud Sodangi & Fahad Anwar & Muhammad Hassan Bakri & Rana Faisal Tufail & Danish Farooq, 2020. "Effects of Landscape Changes on Soil Erosion in the Built Environment: Application of Geospatial-Based RUSLE Technique," Sustainability, MDPI, vol. 12(15), pages 1-20, July.
    4. Manuel López-Vicente & Elena Calvo-Seas & Sara Álvarez & Artemi Cerdà, 2020. "Effectiveness of Cover Crops to Reduce Loss of Soil Organic Matter in a Rainfed Vineyard," Land, MDPI, vol. 9(7), pages 1-16, July.
    5. Fang Yang & Rui Cen & Weiying Feng & Jing Liu & Zhongyi Qu & Qingfeng Miao, 2020. "Effects of Super-Absorbent Polymer on Soil Remediation and Crop Growth in Arid and Semi-Arid Areas," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    6. Theodora Angelopoulou & Athanasios Balafoutis & George Zalidis & Dionysis Bochtis, 2020. "From Laboratory to Proximal Sensing Spectroscopy for Soil Organic Carbon Estimation—A Review," Sustainability, MDPI, vol. 12(2), pages 1-24, January.
    7. Yun Xue & Bin Zou & Yimin Wen & Yulong Tu & Liwei Xiong, 2020. "Hyperspectral Inversion of Chromium Content in Soil Using Support Vector Machine Combined with Lab and Field Spectra," Sustainability, MDPI, vol. 12(11), pages 1-16, May.
    8. Artemi Cerdà & Jesús Rodrigo-Comino, 2021. "Regional Farmers’ Perception and Societal Issues in Vineyards Affected by High Erosion Rates," Land, MDPI, vol. 10(2), pages 1-18, February.
    9. Ecker, Olivier & Hatzenbuehler, Patrick L. & Mahrt, Kristi, 2018. "Transforming agriculture for improving food and nutrition security among Nigerian farm households," NSSP working papers 56, International Food Policy Research Institute (IFPRI).
    10. Claudia Hanson & Sanni Kujala & Peter Waiswa & Tanya Marchant & Joanna Schellenberg, 2017. "Community-based approaches for neonatal survival: Meta-analyses of randomized trial data," WIDER Working Paper Series wp-2017-137, World Institute for Development Economic Research (UNU-WIDER).
    11. Eugenia Ganea & Valentina Bodrug-Lungu, 2018. "Addressing Inequality in Vocational/ Technical Education by Eliminating Gender Bias," Revista romaneasca pentru educatie multidimensionala - Journal for Multidimensional Education, Editura Lumen, Department of Economics, vol. 10(4), pages 136-155, December.
    12. Gallopín, Gilberto, 2018. "Back to the future," Energy Policy, Elsevier, vol. 123(C), pages 318-324.
    13. Pandey, Shanta, 2017. "Persistent nature of child marriage among women even when it is illegal: The case of Nepal," Children and Youth Services Review, Elsevier, vol. 73(C), pages 242-247.
    14. OGUNNOWO, Fatai Abiodun & Prof. F. A. OKWO & JULIUS, Deborah Nwanne, 2023. "Availability and Utilization of Security Facilities in Federal Tertiary Institutions of Enugu State, Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 7(5), pages 931-941, May.
    15. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    16. Victor Kasulo & Rochelle Holm & Mavuto Tembo & Wales Singini & Joshua Mchenga, 2020. "Enhancing sustainable sanitation through capacity building and rural sanitation marketing in Malawi," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(1), pages 201-215, January.
    17. Fernanda Guedes & Alexandre Szklo & Pedro Rochedo & Frédéric Lantz & Leticia Magalar & Eveline Maria Vásquez Arroyo, 2018. "Climate-Energy-Water Nexus in Brazilian Oil Refineries," Working Papers hal-03188594, HAL.
    18. Alex. B. McBratney & Damien Field & Cristine L.S. Morgan & Jingyi Huang, 2019. "On Soil Capability, Capacity, and Condition," Sustainability, MDPI, vol. 11(12), pages 1-11, June.
    19. Tiantian Zhai, 2021. "Environmental Challenges, Opportunities, and Policy Implications to Materialize China’s Green Belt and Road Initiative," Sustainability, MDPI, vol. 13(18), pages 1-14, September.
    20. Asghari, Shiva & Zeinalzadeh, Kamran & Kheirfam, Hossein & Habibzadeh Azar, Behnam, 2022. "The impact of cyanobacteria inoculation on soil hydraulic properties at the lab-scale experiment," Agricultural Water Management, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:3:p:291-:d:515598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.