IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i11d10.1007_s11269-016-1384-9.html
   My bibliography  Save this article

Daily Reference Evapotranspiration for Hyper-Arid to Moist Sub-Humid Climates in Inner Mongolia, China: I. Assessing Temperature Methods and Spatial Variability

Author

Listed:
  • Xiaodong Ren

    (Inner Mongolia Agricultural University)

  • Zhongyi Qu

    (Inner Mongolia Agricultural University)

  • Diogo S. Martins

    (Universidade de Lisboa
    Universidade de Lisboa)

  • Paula Paredes

    (Universidade de Lisboa)

  • Luis S. Pereira

    (Universidade de Lisboa)

Abstract

When weather data sets available for computing the reference evapotranspiration are incomplete or of questionable quality, there is the need to replace the FAO Penman-Monteith (PM-ETo) method by approaches requiring reduced sets only, particularly maximum and minimum temperature. The Hargreaves-Samani (HS) equation and the PM-ETo using only temperature data (PMT) are considered in this study and their results are compared with those of the PM-ETo using full datasets. Daily data sets refer to the period 1981–2012 and to a network of 50 meteorological stations covering the wide range of climates of Inner Mongolia. For both the PMT and HS methods, the solar radiation coefficients kRs were calibrated and have shown to be similar for both methods and to vary with climate aridity. For the PMT, the estimation of the dew point temperature (Tdew) was performed using the minimum temperature corrected for site aridity or, for humid climates, from a value near the average temperature. This improved estimation of Tdew was essential for a good performance of the PMT method in arid conditions and when temperatures are extremely low. RMSE

Suggested Citation

  • Xiaodong Ren & Zhongyi Qu & Diogo S. Martins & Paula Paredes & Luis S. Pereira, 2016. "Daily Reference Evapotranspiration for Hyper-Arid to Moist Sub-Humid Climates in Inner Mongolia, China: I. Assessing Temperature Methods and Spatial Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3769-3791, September.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:11:d:10.1007_s11269-016-1384-9
    DOI: 10.1007/s11269-016-1384-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1384-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1384-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Majidi & A. Alizadeh & M. Vazifedoust & A. Farid & T. Ahmadi, 2015. "Analysis of the Effect of Missing Weather Data on Estimating Daily Reference Evapotranspiration Under Different Climatic Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2107-2124, May.
    2. Martí, Pau & González-Altozano, Pablo & López-Urrea, Ramón & Mancha, Luis A. & Shiri, Jalal, 2015. "Modeling reference evapotranspiration with calculated targets. Assessment and implications," Agricultural Water Management, Elsevier, vol. 149(C), pages 81-90.
    3. Junzeng Xu & Junmei Wang & Qi Wei & Yanhua Wang, 2016. "Symbolic Regression Equations for Calculating Daily Reference Evapotranspiration with the Same Input to Hargreaves-Samani in Arid China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 2055-2073, April.
    4. Ali Rahimikhoob, 2014. "Comparison between M5 Model Tree and Neural Networks for Estimating Reference Evapotranspiration in an Arid Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 657-669, February.
    5. Saadi, Sameh & Todorovic, Mladen & Tanasijevic, Lazar & Pereira, Luis S. & Pizzigalli, Claudia & Lionello, Piero, 2015. "Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield," Agricultural Water Management, Elsevier, vol. 147(C), pages 103-115.
    6. Xiaohu Wen & Jianhua Si & Zhibin He & Jun Wu & Hongbo Shao & Haijiao Yu, 2015. "Support-Vector-Machine-Based Models for Modeling Daily Reference Evapotranspiration With Limited Climatic Data in Extreme Arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3195-3209, July.
    7. P. Mallikarjuna & S. Jyothy & D. Murthy & K. Reddy, 2014. "Performance of Recalibrated Equations for the Estimation of Daily Reference Evapotranspiration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4513-4535, October.
    8. Lecina, S. & Martinez-Cob, A. & Perez, P. J. & Villalobos, F. J. & Baselga, J. J., 2003. "Fixed versus variable bulk canopy resistance for reference evapotranspiration estimation using the Penman-Monteith equation under semiarid conditions," Agricultural Water Management, Elsevier, vol. 60(3), pages 181-198, May.
    9. Jabloun, M. & Sahli, A., 2008. "Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: Application to Tunisia," Agricultural Water Management, Elsevier, vol. 95(6), pages 707-715, June.
    10. Slavisa Trajkovic & Srdjan Kolakovic, 2009. "Evaluation of Reference Evapotranspiration Equations Under Humid Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 3057-3067, November.
    11. Allen, Richard G. & Pruitt, William O. & Wright, James L. & Howell, Terry A. & Ventura, Francesca & Snyder, Richard & Itenfisu, Daniel & Steduto, Pasquale & Berengena, Joaquin & Yrisarry, Javier Basel, 2006. "A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paredes, P. & Pereira, L.S., 2019. "Computing FAO56 reference grass evapotranspiration PM-ETo from temperature with focus on solar radiation," Agricultural Water Management, Elsevier, vol. 215(C), pages 86-102.
    2. Ferreira, Lucas Borges & da Cunha, Fernando França & Fernandes Filho, Elpídio Inácio, 2022. "Exploring machine learning and multi-task learning to estimate meteorological data and reference evapotranspiration across Brazil," Agricultural Water Management, Elsevier, vol. 259(C).
    3. Pelosi, A. & Chirico, G.B., 2021. "Regional assessment of daily reference evapotranspiration: Can ground observations be replaced by blending ERA5-Land meteorological reanalysis and CM-SAF satellite-based radiation data?," Agricultural Water Management, Elsevier, vol. 258(C).
    4. Xiaodong Ren & Diogo S. Martins & Zhongyi Qu & Paula Paredes & Luis S. Pereira, 2016. "Daily Reference Evapotranspiration for Hyper-Arid to Moist Sub-Humid Climates in Inner Mongolia, China: II. Trends of ETo and Weather Variables and Related Spatial Patterns," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3793-3814, September.
    5. Yang, Yang & Luo, Yufeng & Wu, Conglin & Zheng, Hezhen & Zhang, Lei & Cui, Yuanlai & Sun, Ningning & Wang, Li, 2019. "Evaluation of six equations for daily reference evapotranspiration estimating using public weather forecast message for different climate regions across China," Agricultural Water Management, Elsevier, vol. 222(C), pages 386-399.
    6. Paredes, Paula & Martins, Diogo S. & Pereira, Luis Santos & Cadima, Jorge & Pires, Carlos, 2018. "Accuracy of daily estimation of grass reference evapotranspiration using ERA-Interim reanalysis products with assessment of alternative bias correction schemes," Agricultural Water Management, Elsevier, vol. 210(C), pages 340-353.
    7. Paredes, Paula & Trigo, Isabel & de Bruin, Henk & Simões, Nuno & Pereira, Luis S., 2021. "Daily grass reference evapotranspiration with Meteosat Second Generation shortwave radiation and reference ET products," Agricultural Water Management, Elsevier, vol. 248(C).
    8. Paredes, P. & Pereira, L.S. & Almorox, J. & Darouich, H., 2020. "Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables," Agricultural Water Management, Elsevier, vol. 240(C).
    9. Rana Muhammad Adnan & Salim Heddam & Zaher Mundher Yaseen & Shamsuddin Shahid & Ozgur Kisi & Binquan Li, 2020. "Prediction of Potential Evapotranspiration Using Temperature-Based Heuristic Approaches," Sustainability, MDPI, vol. 13(1), pages 1-21, December.
    10. Lai, Chengguang & Chen, Xiaohong & Zhong, Ruida & Wang, Zhaoli, 2022. "Implication of climate variable selections on the uncertainty of reference crop evapotranspiration projections propagated from climate variables projections under climate change," Agricultural Water Management, Elsevier, vol. 259(C).
    11. Vásquez, Cristina & Célleri, Rolando & Córdova, Mario & Carrillo-Rojas, Galo, 2022. "Improving reference evapotranspiration (ETo) calculation under limited data conditions in the high Tropical Andes," Agricultural Water Management, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paredes, P. & Pereira, L.S. & Almorox, J. & Darouich, H., 2020. "Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables," Agricultural Water Management, Elsevier, vol. 240(C).
    2. Raziei, Tayeb & Pereira, Luis S., 2013. "Estimation of ETo with Hargreaves–Samani and FAO-PM temperature methods for a wide range of climates in Iran," Agricultural Water Management, Elsevier, vol. 121(C), pages 1-18.
    3. Bellido-Jiménez, Juan Antonio & Estévez, Javier & García-Marín, Amanda Penélope, 2021. "New machine learning approaches to improve reference evapotranspiration estimates using intra-daily temperature-based variables in a semi-arid region of Spain," Agricultural Water Management, Elsevier, vol. 245(C).
    4. Laishram Kanta Singh & Madan K. Jha & Mohita Pandey, 2018. "Framework for Standardizing Less Data-Intensive Methods of Reference Evapotranspiration Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4159-4175, October.
    5. Yufeng Luo & Seydou Traore & Xinwei Lyu & Weiguang Wang & Ying Wang & Yongyu Xie & Xiyun Jiao & Guy Fipps, 2015. "Medium Range Daily Reference Evapotranspiration Forecasting by Using ANN and Public Weather Forecasts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3863-3876, August.
    6. Valle Júnior, Luiz C.G. & Ventura, Thiago M. & Gomes, Raphael S.R. & de S. Nogueira, José & de A. Lobo, Francisco & Vourlitis, George L. & Rodrigues, Thiago R., 2020. "Comparative assessment of modelled and empirical reference evapotranspiration methods for a brazilian savanna," Agricultural Water Management, Elsevier, vol. 232(C).
    7. Paweł Bogawski & Ewa Bednorz, 2014. "Comparison and Validation of Selected Evapotranspiration Models for Conditions in Poland (Central Europe)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5021-5038, November.
    8. Junzeng Xu & Junmei Wang & Qi Wei & Yanhua Wang, 2016. "Symbolic Regression Equations for Calculating Daily Reference Evapotranspiration with the Same Input to Hargreaves-Samani in Arid China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 2055-2073, April.
    9. Widmoser, Peter, 2009. "A discussion on and alternative to the Penman-Monteith equation," Agricultural Water Management, Elsevier, vol. 96(4), pages 711-721, April.
    10. Matin Ahooghalandari & Mehdi Khiadani & Mina Esmi Jahromi, 2016. "Developing Equations for Estimating Reference Evapotranspiration in Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3815-3828, September.
    11. Viktor Dubovský & Dagmar Dlouhá & Lukáš Pospíšil, 2020. "The Calibration of Evaporation Models against the Penman–Monteith Equation on Lake Most," Sustainability, MDPI, vol. 13(1), pages 1-17, December.
    12. Rana, G. & Katerji, N. & Lazzara, P. & Ferrara, R.M., 2012. "Operational determination of daily actual evapotranspiration of irrigated tomato crops under Mediterranean conditions by one-step and two-step models: Multiannual and local evaluations," Agricultural Water Management, Elsevier, vol. 115(C), pages 285-296.
    13. Nouri, Milad & Homaee, Mehdi, 2022. "Reference crop evapotranspiration for data-sparse regions using reanalysis products," Agricultural Water Management, Elsevier, vol. 262(C).
    14. Singh Rawat, Kishan & Kumar Singh, Sudhir & Bala, Anju & Szabó, Szilárd, 2019. "Estimation of crop evapotranspiration through spatial distributed crop coefficient in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 213(C), pages 922-933.
    15. Liu, Xiaoying & Xu, Chunying & Zhong, Xiuli & Li, Yuzhong & Yuan, Xiaohuan & Cao, Jingfeng, 2017. "Comparison of 16 models for reference crop evapotranspiration against weighing lysimeter measurement," Agricultural Water Management, Elsevier, vol. 184(C), pages 145-155.
    16. Xu, Junzeng & Liu, Xiaoyin & Yang, Shihong & Qi, Zhiming & Wang, Yijiang, 2017. "Modeling rice evapotranspiration under water-saving irrigation by calibrating canopy resistance model parameters in the Penman-Monteith equation," Agricultural Water Management, Elsevier, vol. 182(C), pages 55-66.
    17. Feng, Yu & Jia, Yue & Cui, Ningbo & Zhao, Lu & Li, Chen & Gong, Daozhi, 2017. "Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China," Agricultural Water Management, Elsevier, vol. 181(C), pages 1-9.
    18. Shiri, Jalal, 2017. "Evaluation of FAO56-PM, empirical, semi-empirical and gene expression programming approaches for estimating daily reference evapotranspiration in hyper-arid regions of Iran," Agricultural Water Management, Elsevier, vol. 188(C), pages 101-114.
    19. Zanotelli, Damiano & Montagnani, Leonardo & Andreotti, Carlo & Tagliavini, Massimo, 2019. "Evapotranspiration and crop coefficient patterns of an apple orchard in a sub-humid environment," Agricultural Water Management, Elsevier, vol. 226(C).
    20. Ji, X.B. & Chen, J.M. & Zhao, W.Z. & Kang, E.S. & Jin, B.W. & Xu, S.Q., 2017. "Comparison of hourly and daily Penman-Monteith grass- and alfalfa-reference evapotranspiration equations and crop coefficients for maize under arid climatic conditions," Agricultural Water Management, Elsevier, vol. 192(C), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:11:d:10.1007_s11269-016-1384-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.