IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v241y2020ics0378377420303930.html
   My bibliography  Save this article

Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach

Author

Listed:
  • Pereira, L.S.
  • Paredes, P.
  • Jovanovic, N.

Abstract

This study reviews soil water balance (SWB) model approaches to determine crop irrigation requirements and scheduling irrigation adopting the FAO56 method. The Kc-ETo approach is discussed with consideration of baseline concepts namely standard vs. actual Kc concepts, as well as single and dual Kc approaches. Requirements for accurate SWB and appropriate parameterization and calibration are introduced. The one-step vs. the two-step computational approaches is discussed before the review of the FAO56 method to compute and partition crop evapotranspiration and related soil water balance. A brief review on transient state models is also included. Baseline information is concluded with a discussion on yields prediction and performance indicators related to water productivity. The study is continued with an overview on models development and use after publication of FAO24, essentially single Kc models, followed by a review on models following FAO56, particularly adopting the dual Kc approach. Features of dual Kc modeling approaches are analyzed through a few applications of the SWB model SIMDualKc, mainly for derivation of basal and single Kc, extending the basal Kc approach to relay intercrop cultivation, assessing alternative planting dates, determining beneficial and non-beneficial uses of water by an irrigated crop, and assessing the groundwater contribution to crop ET in the presence of a shallow water table. The review finally discusses the challenges placed to SWB modeling for real time irrigation scheduling, particularly the new modeling approaches for large scale multi-users application, use of cloud computing and adopting the internet of things (IoT), as well as an improved wireless association of modeling with soil and plant sensors. Further challenges refer to the use of remote sensing energy balance and vegetation indices to map Kc, ET and crop water and irrigation requirements. Trends are expected to change research issues relative to SWB modeling, with traditional models mainly used for research while new, fast-responding and multi-users models based on cloud and IoT technologies will develop into applications to the farm practice. Likely, the Kc-ETo will continue to be used, with ETo from gridded networks, re-analysis and other sources, and Kc data available in real time from large databases and remote sensing.

Suggested Citation

  • Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:agiwat:v:241:y:2020:i:c:s0378377420303930
    DOI: 10.1016/j.agwat.2020.106357
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420303930
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106357?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peddinti, Srinivasa Rao & Kambhammettu, BVN P, 2019. "Dynamics of crop coefficients for citrus orchards of central India using water balance and eddy covariance flux partition techniques," Agricultural Water Management, Elsevier, vol. 212(C), pages 68-77.
    2. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Wang, T. & López-Urrea, R. & Cancela, J.J. & Allen, R.G., 2020. "Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Pereira, Luis S. & Paredes, Paula & Rodrigues, Gonçalo C. & Neves, Manuela, 2015. "Modeling malt barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing AquaCrop and SIMDualKc models," Agricultural Water Management, Elsevier, vol. 159(C), pages 239-254.
    4. Panigrahi, B. & Panda, Sudhindra N., 2003. "Field test of a soil water balance simulation model," Agricultural Water Management, Elsevier, vol. 58(3), pages 223-240, February.
    5. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    6. Yang, Yubin & Wilson, Lloyd T. & Wang, Jing, 2012. "Site-specific and regional on-farm rice water conservation analyzer (RiceWCA): Development and evaluation of the water balance model," Agricultural Water Management, Elsevier, vol. 115(C), pages 66-82.
    7. Bos, M. G. & Burton, M. A. & Molden, David J., 2005. "Irrigation and drainage performance assessment: practical guidelines," IWMI Books, Reports H037064, International Water Management Institute.
    8. Paredes, Paula & Pereira, Luis S. & Rodrigues, Gonçalo C. & Botelho, Nuno & Torres, Maria Odete, 2017. "Using the FAO dual crop coefficient approach to model water use and productivity of processing pea (Pisum sativum L.) as influenced by irrigation strategies," Agricultural Water Management, Elsevier, vol. 189(C), pages 5-18.
    9. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    10. Paredes, P. & Pereira, L.S. & Almorox, J. & Darouich, H., 2020. "Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables," Agricultural Water Management, Elsevier, vol. 240(C).
    11. Z. Popova & M. Ivanova & D. Martins & L. Pereira & K. Doneva & V. Alexandrov & M. Kercheva, 2014. "Vulnerability of Bulgarian agriculture to drought and climate variability with focus on rainfed maize systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 865-886, November.
    12. Sarr, Benoit & Lecoeur, Jeremie & Clouvel, Pascal, 2004. "Irrigation scheduling of confectionery groundnut (Arachis hypogeaea L.) in Senegal using a simple water balance model," Agricultural Water Management, Elsevier, vol. 67(3), pages 201-220, July.
    13. Lee, In, 2017. "Big data: Dimensions, evolution, impacts, and challenges," Business Horizons, Elsevier, vol. 60(3), pages 293-303.
    14. Qiu, Rangjian & Du, Taisheng & Kang, Shaozhong & Chen, Renqiang & Wu, Laosheng, 2015. "Assessing the SIMDualKc model for estimating evapotranspiration of hot pepper grown in a solar greenhouse in Northwest China," Agricultural Systems, Elsevier, vol. 138(C), pages 1-9.
    15. Mailhol, J. C. & Zairi, A. & Slatni, A. & Ben Nouma, B. & El Amani, H., 2004. "Analysis of irrigation systems and irrigation strategies for durum wheat in Tunisia," Agricultural Water Management, Elsevier, vol. 70(1), pages 19-37, October.
    16. Schwartz, Robert C. & Domínguez, Alfonso & Pardo, José J. & Colaizzi, Paul D. & Baumhardt, R. Louis & Bell, Jourdan M., 2020. "A crop coefficient –based water use model with non-uniform root distribution," Agricultural Water Management, Elsevier, vol. 228(C).
    17. Paredes, Paula & Martins, Diogo S. & Pereira, Luis Santos & Cadima, Jorge & Pires, Carlos, 2018. "Accuracy of daily estimation of grass reference evapotranspiration using ERA-Interim reanalysis products with assessment of alternative bias correction schemes," Agricultural Water Management, Elsevier, vol. 210(C), pages 340-353.
    18. Jiang, Yiwen & Zhang, Lanhui & Zhang, Baoqing & He, Chansheng & Jin, Xin & Bai, Xiao, 2016. "Modeling irrigation management for water conservation by DSSAT-maize model in arid northwestern China," Agricultural Water Management, Elsevier, vol. 177(C), pages 37-45.
    19. Ortega-Farias, Samuel Orlando & Olioso, A. & Fuentes, S. & Valdes, H., 2006. "Latent heat flux over a furrow-irrigated tomato crop using Penman-Monteith equation with a variable surface canopy resistance," Agricultural Water Management, Elsevier, vol. 82(3), pages 421-432, April.
    20. Shang, Songhao & Mao, Xiaomin, 2006. "Application of a simulation based optimization model for winter wheat irrigation scheduling in North China," Agricultural Water Management, Elsevier, vol. 85(3), pages 314-322, October.
    21. González Perea, R. & Fernández García, I. & Martin Arroyo, M. & Rodríguez Díaz, J.A. & Camacho Poyato, E. & Montesinos, P., 2017. "Multiplatform application for precision irrigation scheduling in strawberries," Agricultural Water Management, Elsevier, vol. 183(C), pages 194-201.
    22. Li, Hongjun & Li, Jiazhen & Shen, Yanjun & Zhang, Xiying & Lei, Yuping, 2018. "Web-based irrigation decision support system with limited inputs for farmers," Agricultural Water Management, Elsevier, vol. 210(C), pages 279-285.
    23. Ma, Ying & Feng, Shaoyuan & Song, Xianfang, 2013. "A root zone model for estimating soil water balance and crop yield responses to deficit irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 127(C), pages 13-24.
    24. Paredes, P. & Rodrigues, G.C. & Alves, I. & Pereira, L.S., 2014. "Partitioning evapotranspiration, yield prediction and economic returns of maize under various irrigation management strategies," Agricultural Water Management, Elsevier, vol. 135(C), pages 27-39.
    25. Corbari, Chiara & Salerno, Raffaele & Ceppi, Alessandro & Telesca, Vito & Mancini, Marco, 2019. "Smart irrigation forecast using satellite LANDSAT data and meteo-hydrological modeling," Agricultural Water Management, Elsevier, vol. 212(C), pages 283-294.
    26. Olivera-Guerra, Luis & Merlin, Olivier & Er-Raki, Salah & Khabba, Saïd & Escorihuela, Maria Jose, 2018. "Estimating the water budget components of irrigated crops: Combining the FAO-56 dual crop coefficient with surface temperature and vegetation index data," Agricultural Water Management, Elsevier, vol. 208(C), pages 120-131.
    27. Wei, Zheng & Paredes, Paula & Liu, Yu & Chi, Wei Wei & Pereira, Luis S., 2015. "Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain," Agricultural Water Management, Elsevier, vol. 147(C), pages 43-53.
    28. Paredes, P. & Pereira, L.S., 2019. "Computing FAO56 reference grass evapotranspiration PM-ETo from temperature with focus on solar radiation," Agricultural Water Management, Elsevier, vol. 215(C), pages 86-102.
    29. Alves, Isabel & Santos Pereira, Luis, 2000. "Modelling surface resistance from climatic variables?," Agricultural Water Management, Elsevier, vol. 42(3), pages 371-385, January.
    30. Allen, Richard G. & Pruitt, William O. & Wright, James L. & Howell, Terry A. & Ventura, Francesca & Snyder, Richard & Itenfisu, Daniel & Steduto, Pasquale & Berengena, Joaquin & Yrisarry, Javier Basel, 2006. "A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 1-22, March.
    31. El-Naggar, A.G. & Hedley, C.B. & Horne, D. & Roudier, P. & Clothier, B.E., 2020. "Soil sensing technology improves application of irrigation water," Agricultural Water Management, Elsevier, vol. 228(C).
    32. Vazifedoust, M. & van Dam, J.C. & Feddes, R.A. & Feizi, M., 2008. "Increasing water productivity of irrigated crops under limited water supply at field scale," Agricultural Water Management, Elsevier, vol. 95(2), pages 89-102, February.
    33. Cancela, J.J. & Fandiño, M. & Rey, B.J. & Martínez, E.M., 2015. "Automatic irrigation system based on dual crop coefficient, soil and plant water status for Vitis vinifera (cv Godello and cv Mencía)," Agricultural Water Management, Elsevier, vol. 151(C), pages 52-63.
    34. Mailhol, J.-C. & Albasha, R. & Cheviron, B. & Lopez, J.-M. & Ruelle, P. & Dejean, C., 2018. "The PILOTE-N model for improving water and nitrogen management practices: Application in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 204(C), pages 162-179.
    35. Acharya, Subodh & Mylavarapu, Rao S., 2015. "Modeling shallow water table dynamics under subsurface irrigation and drainage," Agricultural Water Management, Elsevier, vol. 149(C), pages 166-174.
    36. Raes, Dirk & Geerts, Sam & Kipkorir, Emmanuel & Wellens, Joost & Sahli, Ali, 2006. "Simulation of yield decline as a result of water stress with a robust soil water balance model," Agricultural Water Management, Elsevier, vol. 81(3), pages 335-357, March.
    37. Shrestha, Nirman & Geerts, Sam & Raes, Dirk & Horemans, Stefaan & Soentjens, Sarah & Maupas, Fabienne & Clouet, Philippe, 2010. "Yield response of sugar beets to water stress under Western European conditions," Agricultural Water Management, Elsevier, vol. 97(2), pages 346-350, February.
    38. Kusunose, Yoko & Mahmood, Rezaul, 2016. "Imperfect forecasts and decision making in agriculture," Agricultural Systems, Elsevier, vol. 146(C), pages 103-110.
    39. Šimůnek, Jiří & Hopmans, Jan W., 2009. "Modeling compensated root water and nutrient uptake," Ecological Modelling, Elsevier, vol. 220(4), pages 505-521.
    40. Mandal, Uttam Kumar & Victor, U.S. & Srivastava, N.N. & Sharma, K.L. & Ramesh, V. & Vanaja, M. & Korwar, G.R. & Ramakrishna, Y.S., 2007. "Estimating yield of sorghum using root zone water balance model and spectral characteristics of crop in a dryland Alfisol," Agricultural Water Management, Elsevier, vol. 87(3), pages 315-327, February.
    41. Xu, Xu & Huang, Guanhua & Sun, Chen & Pereira, Luis S. & Ramos, Tiago B. & Huang, Quanzhong & Hao, Yuanyuan, 2013. "Assessing the effects of water table depth on water use, soil salinity and wheat yield: Searching for a target depth for irrigated areas in the upper Yellow River basin," Agricultural Water Management, Elsevier, vol. 125(C), pages 46-60.
    42. Consoli, S. & Licciardello, F. & Vanella, D. & Pasotti, L. & Villani, G. & Tomei, F., 2016. "Testing the water balance model criteria using TDR measurements, micrometeorological data and satellite-based information," Agricultural Water Management, Elsevier, vol. 170(C), pages 68-80.
    43. Campos, Isidro & Neale, Christopher M.U. & Suyker, Andrew E. & Arkebauer, Timothy J. & Gonçalves, Ivo Z., 2017. "Reflectance-based crop coefficients REDUX: For operational evapotranspiration estimates in the age of high producing hybrid varieties," Agricultural Water Management, Elsevier, vol. 187(C), pages 140-153.
    44. Liu, Y. & Pereira, L.S. & Fernando, R.M., 2006. "Fluxes through the bottom boundary of the root zone in silty soils: Parametric approaches to estimate groundwater contribution and percolation," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 27-40, July.
    45. Allen, Richard G. & Pereira, Luis S. & Howell, Terry A. & Jensen, Marvin E., 2011. "Evapotranspiration information reporting: I. Factors governing measurement accuracy," Agricultural Water Management, Elsevier, vol. 98(6), pages 899-920, April.
    46. Singh, K. B. & Gajri, P. R. & Arora, V. K., 2001. "Modelling the effects of soil and water management practices on the water balance and performance of rice," Agricultural Water Management, Elsevier, vol. 49(2), pages 77-95, July.
    47. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    48. George, Biju A. & Raghuwanshi, N. S. & Singh, R., 2004. "Development and testing of a GIS integrated irrigation scheduling model," Agricultural Water Management, Elsevier, vol. 66(3), pages 221-237, May.
    49. Lovelli, S. & Perniola, M. & Arcieri, M. & Rivelli, A.R. & Di Tommaso, T., 2008. "Water use assessment in muskmelon by the Penman-Monteith "one-step" approach," Agricultural Water Management, Elsevier, vol. 95(10), pages 1153-1160, October.
    50. DeJonge, K.C. & Ascough, J.C. & Andales, A.A. & Hansen, N.C. & Garcia, L.A. & Arabi, M., 2012. "Improving evapotranspiration simulations in the CERES-Maize model under limited irrigation," Agricultural Water Management, Elsevier, vol. 115(C), pages 92-103.
    51. López-Urrea, R. & Domínguez, A. & Pardo, J.J. & Montoya, F. & García-Vila, M. & Martínez-Romero, A., 2020. "Parameterization and comparison of the AquaCrop and MOPECO models for a high-yielding barley cultivar under different irrigation levels," Agricultural Water Management, Elsevier, vol. 230(C).
    52. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    53. Er-Raki, S. & Chehbouni, A. & Guemouria, N. & Duchemin, B. & Ezzahar, J. & Hadria, R., 2007. "Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region," Agricultural Water Management, Elsevier, vol. 87(1), pages 41-54, January.
    54. Chopart, J.L. & Mezino, M. & Aure, F. & Le Mezo, L. & Mete, M. & Vauclin, M., 2007. "OSIRI: A simple decision-making tool for monitoring irrigation of small farms in heterogeneous environments," Agricultural Water Management, Elsevier, vol. 87(2), pages 128-138, January.
    55. Lecina, S. & Isidoro, D. & Playán, E. & Aragüés, R., 2010. "Irrigation modernization and water conservation in Spain: The case of Riegos del Alto Aragón," Agricultural Water Management, Elsevier, vol. 97(10), pages 1663-1675, October.
    56. Paredes, Paula & Rodrigues, Gonçalo C. & Cameira, Maria do Rosário & Torres, Maria Odete & Pereira, Luis S., 2017. "Assessing yield, water productivity and farm economic returns of malt barley as influenced by the sowing dates and supplemental irrigation," Agricultural Water Management, Elsevier, vol. 179(C), pages 132-143.
    57. O'Shaughnessy, Susan A. & Evett, Steven R. & Colaizzi, Paul D. & Howell, Terry A., 2012. "A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum," Agricultural Water Management, Elsevier, vol. 107(C), pages 122-132.
    58. Helman, David & Bonfil, David J. & Lensky, Itamar M., 2019. "Crop RS-Met: A biophysical evapotranspiration and root-zone soil water content model for crops based on proximal sensing and meteorological data," Agricultural Water Management, Elsevier, vol. 211(C), pages 210-219.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    3. Rallo, G. & Paço, T.A. & Paredes, P. & Puig-Sirera, À. & Massai, R. & Provenzano, G. & Pereira, L.S., 2021. "Updated single and dual crop coefficients for tree and vine fruit crops," Agricultural Water Management, Elsevier, vol. 250(C).
    4. Lucas Borges Ferreira & Fernando França da Cunha & Sidney Sara Zanetti, 2021. "Selecting models for the estimation of reference evapotranspiration for irrigation scheduling purposes," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-18, January.
    5. Pereira, L.S. & Paredes, P. & López-Urrea, R. & Hunsaker, D.J. & Mota, M. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach," Agricultural Water Management, Elsevier, vol. 243(C).
    6. Shao, Guomin & Han, Wenting & Zhang, Huihui & Liu, Shouyang & Wang, Yi & Zhang, Liyuan & Cui, Xin, 2021. "Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices," Agricultural Water Management, Elsevier, vol. 252(C).
    7. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    2. Paredes, Paula & Pereira, Luis S. & Rodrigues, Gonçalo C. & Botelho, Nuno & Torres, Maria Odete, 2017. "Using the FAO dual crop coefficient approach to model water use and productivity of processing pea (Pisum sativum L.) as influenced by irrigation strategies," Agricultural Water Management, Elsevier, vol. 189(C), pages 5-18.
    3. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Wang, T. & López-Urrea, R. & Cancela, J.J. & Allen, R.G., 2020. "Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).
    4. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    5. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    6. Miao, Qingfeng & Rosa, Ricardo D. & Shi, Haibin & Paredes, Paula & Zhu, Li & Dai, Jiaxin & Gonçalves, José M. & Pereira, Luis S., 2016. "Modeling water use, transpiration and soil evaporation of spring wheat–maize and spring wheat–sunflower relay intercropping using the dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 165(C), pages 211-229.
    7. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    8. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    9. Paredes, Paula & Rodrigues, Gonçalo C. & Cameira, Maria do Rosário & Torres, Maria Odete & Pereira, Luis S., 2017. "Assessing yield, water productivity and farm economic returns of malt barley as influenced by the sowing dates and supplemental irrigation," Agricultural Water Management, Elsevier, vol. 179(C), pages 132-143.
    10. Paredes, Paula & D’Agostino, Daniela & Assif, Mahdi & Todorovic, Mladen & Pereira, Luis S., 2018. "Assessing potato transpiration, yield and water productivity under various water regimes and planting dates using the FAO dual Kc approach," Agricultural Water Management, Elsevier, vol. 195(C), pages 11-24.
    11. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    12. Pereira, Luis S. & Paredes, Paula & Rodrigues, Gonçalo C. & Neves, Manuela, 2015. "Modeling malt barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing AquaCrop and SIMDualKc models," Agricultural Water Management, Elsevier, vol. 159(C), pages 239-254.
    13. Paredes, P. & Pereira, L.S. & Almorox, J. & Darouich, H., 2020. "Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables," Agricultural Water Management, Elsevier, vol. 240(C).
    14. Rallo, G. & Paço, T.A. & Paredes, P. & Puig-Sirera, À. & Massai, R. & Provenzano, G. & Pereira, L.S., 2021. "Updated single and dual crop coefficients for tree and vine fruit crops," Agricultural Water Management, Elsevier, vol. 250(C).
    15. Wei, Zheng & Paredes, Paula & Liu, Yu & Chi, Wei Wei & Pereira, Luis S., 2015. "Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain," Agricultural Water Management, Elsevier, vol. 147(C), pages 43-53.
    16. Paredes, Paula & Martins, Diogo S. & Pereira, Luis Santos & Cadima, Jorge & Pires, Carlos, 2018. "Accuracy of daily estimation of grass reference evapotranspiration using ERA-Interim reanalysis products with assessment of alternative bias correction schemes," Agricultural Water Management, Elsevier, vol. 210(C), pages 340-353.
    17. Wu, Yao & Liu, Tingxi & Paredes, Paula & Duan, Limin & Pereira, Luis S., 2015. "Water use by a groundwater dependent maize in a semi-arid region of Inner Mongolia: Evapotranspiration partitioning and capillary rise," Agricultural Water Management, Elsevier, vol. 152(C), pages 222-232.
    18. Paredes, Paula & Trigo, Isabel & de Bruin, Henk & Simões, Nuno & Pereira, Luis S., 2021. "Daily grass reference evapotranspiration with Meteosat Second Generation shortwave radiation and reference ET products," Agricultural Water Management, Elsevier, vol. 248(C).
    19. Darouich, Hanaa & Karfoul, Razan & Eid, Haitham & Ramos, Tiago B. & Baddour, Nisreen & Moustafa, Ali & Assaad, Mahmoud I., 2020. "Modeling Zucchini squash irrigation requirements in the Syrian Akkar region using the FAO56 dual-Kc approach," Agricultural Water Management, Elsevier, vol. 229(C).
    20. Pôças, I. & Calera, A. & Campos, I. & Cunha, M., 2020. "Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches," Agricultural Water Management, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:241:y:2020:i:c:s0378377420303930. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/agwat .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.