IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v211y2019icp210-219.html
   My bibliography  Save this article

Crop RS-Met: A biophysical evapotranspiration and root-zone soil water content model for crops based on proximal sensing and meteorological data

Author

Listed:
  • Helman, David
  • Bonfil, David J.
  • Lensky, Itamar M.

Abstract

Assessing crops water use is essential for agricultural water management and planning, particularly in water-limited regions. Here, we present a biophysical model to estimate crop actual evapotranspiration and root-zone soil water content using proximal sensing and meteorological data (Crop RS-Met). The model, which is based on the dual FAO56 formulation, uses a water deficit factor calculated from rainfall and atmospheric demand information to constrain actual evapotranspiration and soil water content in crops growing under dry conditions. We tested the Crop RS-Met model in a dryland experimental field comprising a variety of wheat (Triticum aestivum L. and T. durum) cultivars with diverse phenology. Crop RS-Met was shown to accurately capture seasonal changes in wheat water use during the growing season. The average R2 of modeled vs. observed soil water content for all cultivars (N = 11) was 0.92 ± 0.02 with average relative RMSE and bias of 9.29 ± 1.30% and 0.13 ± 0.03%, respectively. We found that changing the integration time period of the water deficit factor in Crop RS-Met affects the accuracy of the model implying that this factor has a vital role in modeling crop water use under dry conditions. Currently, Crop RS-Met has a simple representation of surface runoff and does not take into consideration heterogeneity in the soil profile. Thus, efforts to combine numerical models that simulate soil water dynamics with a Crop RS-Met model driven by high-resolution remote sensing data may be needed for a spatially continuous assessment of crop water use in fields with more complex edaphic characteristics.

Suggested Citation

  • Helman, David & Bonfil, David J. & Lensky, Itamar M., 2019. "Crop RS-Met: A biophysical evapotranspiration and root-zone soil water content model for crops based on proximal sensing and meteorological data," Agricultural Water Management, Elsevier, vol. 211(C), pages 210-219.
  • Handle: RePEc:eee:agiwat:v:211:y:2019:i:c:p:210-219
    DOI: 10.1016/j.agwat.2018.09.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418307352
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.09.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kang, Yaohu & Wang, Qing-Gai & Liu, Hai-Jun, 2005. "Winter wheat canopy interception and its influence factors under sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 74(3), pages 189-199, June.
    2. Declan Butler, 2014. "Many eyes on Earth," Nature, Nature, vol. 505(7482), pages 143-144, January.
    3. Abdelhadi, A. W. & Hata, Takeshi & Tanakamaru, Haruya & Tada, Akio & Tariq, M. A., 2000. "Estimation of crop water requirements in arid region using Penman-Monteith equation with derived crop coefficients: a case study on Acala cotton in Sudan Gezira irrigated scheme," Agricultural Water Management, Elsevier, vol. 45(2), pages 203-214, July.
    4. Campos, Isidro & Balbontín, Claudio & González-Piqueras, Jose & González-Dugo, Maria P. & Neale, Christopher M.U. & Calera, Alfonso, 2016. "Combining a water balance model with evapotranspiration measurements to estimate total available soil water in irrigated and rainfed vineyards," Agricultural Water Management, Elsevier, vol. 165(C), pages 141-152.
    5. Calogero Carletto & Sydney Gourlay & Paul Winters, 2015. "Editor's choice From Guesstimates to GPStimates: Land Area Measurement and Implications for Agricultural Analysis," Journal of African Economies, Centre for the Study of African Economies, vol. 24(5), pages 593-628.
    6. Attia, Ahmed & Rajan, Nithya & Xue, Qingwu & Nair, Shyam & Ibrahim, Amir & Hays, Dirk, 2016. "Application of DSSAT-CERES-Wheat model to simulate winter wheat response to irrigation management in the Texas High Plains," Agricultural Water Management, Elsevier, vol. 165(C), pages 50-60.
    7. Kashyap, P. S. & Panda, R. K., 2001. "Evaluation of evapotranspiration estimation methods and development of crop-coefficients for potato crop in a sub-humid region," Agricultural Water Management, Elsevier, vol. 50(1), pages 9-25, August.
    8. Rawat, Kishan Singh & Bala, Anju & Singh, Sudhir Kumar & Pal, Raj Kumar, 2017. "Quantification of wheat crop evapotranspiration and mapping: A case study from Bhiwani District of Haryana, India," Agricultural Water Management, Elsevier, vol. 187(C), pages 200-209.
    9. Allen, Richard G. & Pruitt, William O. & Wright, James L. & Howell, Terry A. & Ventura, Francesca & Snyder, Richard & Itenfisu, Daniel & Steduto, Pasquale & Berengena, Joaquin & Yrisarry, Javier Basel, 2006. "A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 1-22, March.
    10. López-Urrea, R. & Montoro, A. & González-Piqueras, J. & López-Fuster, P. & Fereres, E., 2009. "Water use of spring wheat to raise water productivity," Agricultural Water Management, Elsevier, vol. 96(9), pages 1305-1310, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).
    2. Víctor Manuel Fernández-Pacheco & Elena Antuña-Yudego & Juan Luis Carús-Candás & María José Suárez-López & Eduardo Álvarez-Álvarez, 2022. "An Evapotranspiration Evolution Model as a Function of Meteorological Variables: A CFD Model Approach," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    3. Zhang, Yu & Han, Wenting & Zhang, Huihui & Niu, Xiaotao & Shao, Guomin, 2023. "Evaluating maize evapotranspiration using high-resolution UAV-based imagery and FAO-56 dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong, Ling & Kang, Shaozhong & Zhang, Lu, 2007. "Temporal and spatial variations of evapotranspiration for spring wheat in the Shiyang river basin in northwest China," Agricultural Water Management, Elsevier, vol. 87(3), pages 241-250, February.
    2. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Mota, M. & Wang, T., 2021. "Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization," Agricultural Water Management, Elsevier, vol. 252(C).
    3. Wang, Peng & Song, Xianfang & Han, Dongmei & Zhang, Yinhua & Zhang, Bing, 2012. "Determination of evaporation, transpiration and deep percolation of summer corn and winter wheat after irrigation," Agricultural Water Management, Elsevier, vol. 105(C), pages 32-37.
    4. Yao, Ning & Li, Yi & Xu, Fang & Liu, Jian & Chen, Shang & Ma, Haijiao & Wai Chau, Henry & Liu, De Li & Li, Meng & Feng, Hao & Yu, Qiang & He, Jianqiang, 2020. "Permanent wilting point plays an important role in simulating winter wheat growth under water deficit conditions," Agricultural Water Management, Elsevier, vol. 229(C).
    5. Srivastava, R.K. & Panda, R.K. & Chakraborty, A. & Halder, D., 2018. "Comparison of actual evapotranspiration of irrigated maize in a sub-humid region using four different canopy resistance based approaches," Agricultural Water Management, Elsevier, vol. 202(C), pages 156-165.
    6. Zhao, Wenzhi & Liu, Bing & Zhang, Zhihui, 2010. "Water requirements of maize in the middle Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 97(2), pages 215-223, February.
    7. Alexandris, Stavros & Proutsos, Nikolaos, 2020. "How significant is the effect of the surface characteristics on the Reference Evapotranspiration estimates?," Agricultural Water Management, Elsevier, vol. 237(C).
    8. Bezerra, Bergson G. & da Silva, Bernardo B. & Bezerra, José R.C. & Sofiatti, Valdinei & dos Santos, Carlos A.C., 2012. "Evapotranspiration and crop coefficient for sprinkler-irrigated cotton crop in Apodi Plateau semiarid lands of Brazil," Agricultural Water Management, Elsevier, vol. 107(C), pages 86-93.
    9. Pereira, L.S. & Paredes, P. & Melton, F. & Johnson, L. & Wang, T. & López-Urrea, R. & Cancela, J.J. & Allen, R.G., 2020. "Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).
    10. Liu, Xiaoying & Xu, Chunying & Zhong, Xiuli & Li, Yuzhong & Yuan, Xiaohuan & Cao, Jingfeng, 2017. "Comparison of 16 models for reference crop evapotranspiration against weighing lysimeter measurement," Agricultural Water Management, Elsevier, vol. 184(C), pages 145-155.
    11. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2016. "Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study," Agricultural Water Management, Elsevier, vol. 177(C), pages 66-76.
    12. Ayala Wineman & Timothy Njagi & C. Leigh Anderson & Travis W. Reynolds & Didier Yélognissè Alia & Priscilla Wainaina & Eric Njue & Pierre Biscaye & Miltone W. Ayieko, 2020. "A Case of Mistaken Identity? Measuring Rates of Improved Seed Adoption in Tanzania Using DNA Fingerprinting," Journal of Agricultural Economics, Wiley Blackwell, vol. 71(3), pages 719-741, September.
    13. Jules Gazeaud & Victor Stephane, 2023. "Productive Workfare? Evidence from Ethiopia's Productive Safety Net Program," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(1), pages 265-290, January.
    14. Gonçalves, Ivo Zution & Mekonnen, Mesfin M. & Neale, Christopher M.U. & Campos, Isidro & Neale, Michael R., 2020. "Temporal and spatial variations of irrigation water use for commercial corn fields in Central Nebraska," Agricultural Water Management, Elsevier, vol. 228(C).
    15. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    16. Bispo, R.C. & Hernandez, F.B.T. & Gonçalves, I.Z. & Neale, C.M.U. & Teixeira, A.H.C., 2022. "Remote sensing based evapotranspiration modeling for sugarcane in Brazil using a hybrid approach," Agricultural Water Management, Elsevier, vol. 271(C).
    17. Zhang, Xifeng & Zhang, Lanhui & He, Chansheng & Li, Jinlin & Jiang, Yiwen & Ma, Libang, 2014. "Quantifying the impacts of land use/land cover change on groundwater depletion in Northwestern China – A case study of the Dunhuang oasis," Agricultural Water Management, Elsevier, vol. 146(C), pages 270-279.
    18. Xiaopei Tang & Haijun Liu & Li Yang & Lun Li & Jie Chang, 2022. "Energy Balance, Microclimate, and Crop Evapotranspiration of Winter Wheat ( Triticum aestivum L.) under Sprinkler Irrigation," Agriculture, MDPI, vol. 12(7), pages 1-23, June.
    19. Hui, Xin & Zheng, Yudong & Yan, Haijun, 2021. "Water distributions of low-pressure sprinklers as affected by the maize canopy under a centre pivot irrigation system," Agricultural Water Management, Elsevier, vol. 245(C).
    20. William J. Burke & Stephen N. Morgan & Thelma Namonje & Milu Muyanga & Nicole M. Mason, 2023. "Beyond the “inverse relationship”: Area mismeasurement may affect actual productivity, not just how we understand it," Agricultural Economics, International Association of Agricultural Economists, vol. 54(4), pages 557-569, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:211:y:2019:i:c:p:210-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.