IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v202y2018icp156-165.html
   My bibliography  Save this article

Comparison of actual evapotranspiration of irrigated maize in a sub-humid region using four different canopy resistance based approaches

Author

Listed:
  • Srivastava, R.K.
  • Panda, R.K.
  • Chakraborty, A.
  • Halder, D.

Abstract

The single layer Penman-Monteith (PM) method is widely used method for the estimation of crop evapotranspiration (ETc). The accuracy of ETc estimate relies upon the quality of input weather data and capacity to approach adequately canopy (rc) and aerodynamic resistance (ra). In this study, the PM method was used to estimate daily crop evapotranspiration of irrigated maize for the years 2013 and 2014 in a sub-humid region. Four different approaches (Monteith, Katerji-Perrier, Todorovic, and Jarvis) were used to estimate canopy resistance and, then after, crop evapotranspiration by PM equation were evaluated. The comparison was made to daily crop evapotranspiration obtained from the soil water balance (SWB) and soil water content variation measured by time domain reflectometry (TDR). The cumulative crop evapotranspiration of SWB, Monteith, Katerji-Perrier, Todorovic and Jarvis approach was respectively, 260.4, 266.8, 252.8, 263.4, 256 mm for the year 2013, and 250.5, 257.7, 240.6, 251.8, 247.6 mm for the year 2014. The comparison of results and the statistical analysis confirmed that Todorovic and Jarvis approach gave reliable values, while the Katerji-Perrier approach could be used as an alternative method.

Suggested Citation

  • Srivastava, R.K. & Panda, R.K. & Chakraborty, A. & Halder, D., 2018. "Comparison of actual evapotranspiration of irrigated maize in a sub-humid region using four different canopy resistance based approaches," Agricultural Water Management, Elsevier, vol. 202(C), pages 156-165.
  • Handle: RePEc:eee:agiwat:v:202:y:2018:i:c:p:156-165
    DOI: 10.1016/j.agwat.2018.02.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418301070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.02.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moratiel, R. & Martínez-Cob, A. & Tarquis, A.M. & Snyder, R.L., 2016. "Soil water balance correction due to light rainfall, dew and fog in Ebro river basin (Spain)," Agricultural Water Management, Elsevier, vol. 170(C), pages 61-67.
    2. Gharsallah, O. & Facchi, A. & Gandolfi, C., 2013. "Comparison of six evapotranspiration models for a surface irrigated maize agro-ecosystem in Northern Italy," Agricultural Water Management, Elsevier, vol. 130(C), pages 119-130.
    3. Campos, Isidro & Balbontín, Claudio & González-Piqueras, Jose & González-Dugo, Maria P. & Neale, Christopher M.U. & Calera, Alfonso, 2016. "Combining a water balance model with evapotranspiration measurements to estimate total available soil water in irrigated and rainfed vineyards," Agricultural Water Management, Elsevier, vol. 165(C), pages 141-152.
    4. Alves, Isabel & Santos Pereira, Luis, 2000. "Modelling surface resistance from climatic variables?," Agricultural Water Management, Elsevier, vol. 42(3), pages 371-385, January.
    5. Kashyap, P. S. & Panda, R. K., 2001. "Evaluation of evapotranspiration estimation methods and development of crop-coefficients for potato crop in a sub-humid region," Agricultural Water Management, Elsevier, vol. 50(1), pages 9-25, August.
    6. Zhao, Wenzhi & Liu, Bing & Zhang, Zhihui, 2010. "Water requirements of maize in the middle Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 97(2), pages 215-223, February.
    7. Pandey, R. K. & Maranville, J. W. & Chetima, M. M., 2000. "Deficit irrigation and nitrogen effects on maize in a Sahelian environment: II. Shoot growth, nitrogen uptake and water extraction," Agricultural Water Management, Elsevier, vol. 46(1), pages 15-27, November.
    8. Pauwels, Valentijn R.N. & Samson, Roeland, 2006. "Comparison of different methods to measure and model actual evapotranspiration rates for a wet sloping grassland," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 1-24, April.
    9. Pandey, R. K. & Maranville, J. W. & Admou, A., 2000. "Deficit irrigation and nitrogen effects on maize in a Sahelian environment: I. Grain yield and yield components," Agricultural Water Management, Elsevier, vol. 46(1), pages 1-13, November.
    10. Lecina, S. & Martinez-Cob, A. & Perez, P. J. & Villalobos, F. J. & Baselga, J. J., 2003. "Fixed versus variable bulk canopy resistance for reference evapotranspiration estimation using the Penman-Monteith equation under semiarid conditions," Agricultural Water Management, Elsevier, vol. 60(3), pages 181-198, May.
    11. Farre, Imma & Faci, Jose Maria, 2006. "Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 135-143, May.
    12. Panda, R. K. & Behera, S. K. & Kashyap, P. S., 2004. "Effective management of irrigation water for maize under stressed conditions," Agricultural Water Management, Elsevier, vol. 66(3), pages 181-203, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang, Keyu & Li, Yi & Horton, Robert & Feng, Hao, 2020. "Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review," Agricultural Water Management, Elsevier, vol. 232(C).
    2. Yan, Haofang & Yu, Jianjun & Zhang, Chuan & Wang, Guoqing & Huang, Song & Ma, Jiamin, 2021. "Comparison of two canopy resistance models to estimate evapotranspiration for tea and wheat in southeast China," Agricultural Water Management, Elsevier, vol. 245(C).
    3. Xing, Liwen & Zhao, Lu & Cui, Ningbo & Liu, Chunwei & Guo, Li & Du, Taisheng & Wu, Zongjun & Gong, Daozhi & Jiang, Shouzheng, 2023. "Apple tree transpiration estimated using the Penman-Monteith model integrated with optimized jarvis model," Agricultural Water Management, Elsevier, vol. 276(C).
    4. Kheir, Ahmed M.S. & Alrajhi, Abdullah A. & Ghoneim, Adel M. & Ali, Esmat F. & Magrashi, Ali & Zoghdan, Medhat G. & Abdelkhalik, Sedhom A.M. & Fahmy, Ahmed E. & Elnashar, Abdelrazek, 2021. "Modeling deficit irrigation-based evapotranspiration optimizes wheat yield and water productivity in arid regions," Agricultural Water Management, Elsevier, vol. 256(C).
    5. Walker, Elisabet & García, Gabriel A. & Venturini, Virginia & Carrasco, Aylen, 2019. "Regional evapotranspiration estimates using the relative soil moisture ratio derived from SMAP products," Agricultural Water Management, Elsevier, vol. 216(C), pages 254-263.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Haofang & Yu, Jianjun & Zhang, Chuan & Wang, Guoqing & Huang, Song & Ma, Jiamin, 2021. "Comparison of two canopy resistance models to estimate evapotranspiration for tea and wheat in southeast China," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Muhammad Irfan Ahmad & Adnan Noor Shah & Jianqiang Sun & Youhong Song, 2020. "Comparative Study on Leaf Gas Exchange, Growth, Grain Yield, and Water Use Efficiency under Irrigation Regimes for Two Maize Hybrids," Agriculture, MDPI, vol. 10(9), pages 1-16, August.
    3. Comas, Louise H. & Trout, Thomas J. & DeJonge, Kendall C. & Zhang, Huihui & Gleason, Sean M., 2019. "Water productivity under strategic growth stage-based deficit irrigation in maize," Agricultural Water Management, Elsevier, vol. 212(C), pages 433-440.
    4. Hao, Baozhen & Xue, Qingwu & Marek, Thomas H. & Jessup, Kirk E. & Hou, Xiaobo & Xu, Wenwei & Bynum, Edsel D. & Bean, Brent W., 2015. "Soil water extraction, water use, and grain yield by drought-tolerant maize on the Texas High Plains," Agricultural Water Management, Elsevier, vol. 155(C), pages 11-21.
    5. Domínguez, A. & de Juan, J.A. & Tarjuelo, J.M. & Martínez, R.S. & Martínez-Romero, A., 2012. "Determination of optimal regulated deficit irrigation strategies for maize in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 67-77.
    6. Rana, G. & Katerji, N. & Lazzara, P. & Ferrara, R.M., 2012. "Operational determination of daily actual evapotranspiration of irrigated tomato crops under Mediterranean conditions by one-step and two-step models: Multiannual and local evaluations," Agricultural Water Management, Elsevier, vol. 115(C), pages 285-296.
    7. Manning, Dale T. & Lurbé, Salvador & Comas, Louise H. & Trout, Thomas J. & Flynn, Nora & Fonte, Steven J., 2018. "Economic viability of deficit irrigation in the Western US," Agricultural Water Management, Elsevier, vol. 196(C), pages 114-123.
    8. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    9. Greaves, Geneille E. & Wang, Yu-Min, 2017. "Effect of regulated deficit irrigation scheduling on water use of corn in southern Taiwan tropical environment," Agricultural Water Management, Elsevier, vol. 188(C), pages 115-125.
    10. Dagdelen, Necdet & Yilmaz, Ersel & Sezgin, Fuat & Gurbuz, Talih, 2006. "Water-yield relation and water use efficiency of cotton (Gossypium hirsutum L.) and second crop corn (Zea mays L.) in western Turkey," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 63-85, April.
    11. Shi, Rongchao & Wang, Jintao & Tong, Ling & Du, Taisheng & Shukla, Manoj Kumar & Jiang, Xuelian & Li, Donghao & Qin, Yonghui & He, Liuyue & Bai, Xiaorui & Guo, Xiaoxu, 2022. "Optimizing planting density and irrigation depth of hybrid maize seed production under limited water availability," Agricultural Water Management, Elsevier, vol. 271(C).
    12. Oktem, A., 2008. "Effect of water shortage on yield, and protein and mineral compositions of drip-irrigated sweet corn in sustainable agricultural systems," Agricultural Water Management, Elsevier, vol. 95(9), pages 1003-1010, September.
    13. Farré, I. & Faci, J.-M., 2009. "Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 96(3), pages 383-394, March.
    14. Gheysari, Mahdi & Mirlatifi, Seyed Majid & Bannayan, Mohammad & Homaee, Mehdi & Hoogenboom, Gerrit, 2009. "Interaction of water and nitrogen on maize grown for silage," Agricultural Water Management, Elsevier, vol. 96(5), pages 809-821, May.
    15. Igbadun, Henry E. & Tarimo, Andrew K.P.R. & Salim, Baanda A. & Mahoo, Henry F., 2007. "Evaluation of selected crop water production functions for an irrigated maize crop," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 1-10, December.
    16. Zhang, Guangxin & Dai, Rongcheng & Ma, Wenzhuo & Fan, Hengzhi & Meng, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Optimizing the ridge–furrow ratio and nitrogen application rate can increase the grain yield and water use efficiency of rain-fed spring maize in the Loess Plateau region of China," Agricultural Water Management, Elsevier, vol. 262(C).
    17. Franco-Luesma, Samuel & Álvaro-Fuentes, Jorge & Plaza-Bonilla, Daniel & Arrúe, José Luis & Cantero-Martínez, Carlos & Cavero, José, 2019. "Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 303-311.
    18. Wang, Feng & Meng, Haofeng & Xie, Ruizhi & Wang, Keru & Ming, Bo & Hou, Peng & Xue, Jun & Li, Shaokun, 2023. "Optimizing deficit irrigation and regulated deficit irrigation methods increases water productivity in maize," Agricultural Water Management, Elsevier, vol. 280(C).
    19. Attia, Ahmed & El-Hendawy, Salah & Al-Suhaibani, Nasser & Alotaibi, Majed & Tahir, Muhammad Usman & Kamal, Khaled Y., 2021. "Evaluating deficit irrigation scheduling strategies to improve yield and water productivity of maize in arid environment using simulation," Agricultural Water Management, Elsevier, vol. 249(C).
    20. Folberth, Christian & Yang, Hong & Gaiser, Thomas & Abbaspour, Karim C. & Schulin, Rainer, 2013. "Modeling maize yield responses to improvement in nutrient, water and cultivar inputs in sub-Saharan Africa," Agricultural Systems, Elsevier, vol. 119(C), pages 22-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:202:y:2018:i:c:p:156-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.