IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v306y2024ics0378377424005298.html
   My bibliography  Save this article

Estimating the transpiration of kiwifruit using an optimized canopy resistance model based on the synthesis of sunlit and shaded leaves

Author

Listed:
  • Li, Zongyang
  • Zhao, Lu
  • Zhao, Zhengxin
  • Cai, Huanjie
  • Xing, Liwen
  • Cui, Ningbo

Abstract

Accurate estimation of transpiration (T) in kiwifruit trees is essential for effective irrigation and water management. Canopy resistance (rc) is crucial for estimating T, but existing models do not fully consider the unique canopy structure and microclimate variations in kiwifruit trees. This study established a rc estimation model based on a synthesis of sunlit and shaded leaves (SSL) and optimized it using Ant Colony Optimization (ACO), Grey Wolf Optimizer (GWO), and Whale Optimization Algorithm (WOA). Using the rc value inverted by the Penman-Monteith model as a standard, we compared the simulation accuracy of the SSL and Jarvis models to identify the optimal model for accurate T estimation under various data availability conditions. The results indicated significant physiological differences between sunlit and shaded leaves, with shaded leaves showing lower net photosynthetic rates and higher stomatal resistance. The optimization SSL model demonstrated improved accuracy over the Jarvis model. The simulation accuracy of the SSL model optimized by the WOA algorithm was the highest, yielding R2, RRMSE, and MAE of rc and T are 0.83, 0.12, 82.55 s m−1, and 0.81, 0.09, 0.23 mm d−1, respectively. In the Jarvis model with different restriction functions the highest accuracy for rc and T, achieved after optimizing by ACO algorithm, yielded R2, RRMSE, and MAE of 0.71, 0.33, 305.94 s m−1, and 0.72, 0.23, 0.65 mm d−1, respectively. Therefore, the SSL model can more accurately estimate the rc and T, and it provides a valuable way for scientific water use and precise irrigation in kiwifruit orchards.

Suggested Citation

  • Li, Zongyang & Zhao, Lu & Zhao, Zhengxin & Cai, Huanjie & Xing, Liwen & Cui, Ningbo, 2024. "Estimating the transpiration of kiwifruit using an optimized canopy resistance model based on the synthesis of sunlit and shaded leaves," Agricultural Water Management, Elsevier, vol. 306(C).
  • Handle: RePEc:eee:agiwat:v:306:y:2024:i:c:s0378377424005298
    DOI: 10.1016/j.agwat.2024.109193
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424005298
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109193?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xing, Liwen & Zhao, Lu & Cui, Ningbo & Liu, Chunwei & Guo, Li & Du, Taisheng & Wu, Zongjun & Gong, Daozhi & Jiang, Shouzheng, 2023. "Apple tree transpiration estimated using the Penman-Monteith model integrated with optimized jarvis model," Agricultural Water Management, Elsevier, vol. 276(C).
    2. Kato, Tomomichi & Kimura, Reiji & Kamichika, Makio, 2004. "Estimation of evapotranspiration, transpiration ratio and water-use efficiency from a sparse canopy using a compartment model," Agricultural Water Management, Elsevier, vol. 65(3), pages 173-191, March.
    3. Li, Xiaojie & Kang, Shaozhong & Li, Fusheng & Jiang, Xuelian & Tong, Ling & Ding, Risheng & Li, Sien & Du, Taisheng, 2016. "Applying segmented Jarvis canopy resistance into Penman-Monteith model improves the accuracy of estimated evapotranspiration in maize for seed production with film-mulching in arid area," Agricultural Water Management, Elsevier, vol. 178(C), pages 314-324.
    4. Srivastava, R.K. & Panda, R.K. & Chakraborty, A. & Halder, D., 2018. "Comparison of actual evapotranspiration of irrigated maize in a sub-humid region using four different canopy resistance based approaches," Agricultural Water Management, Elsevier, vol. 202(C), pages 156-165.
    5. Chia, Min Yan & Huang, Yuk Feng & Koo, Chai Hoon, 2021. "Swarm-based optimization as stochastic training strategy for estimation of reference evapotranspiration using extreme learning machine," Agricultural Water Management, Elsevier, vol. 243(C).
    6. Chen, Dianyu & Wang, Youke & Wang, Xing & Nie, Zhenyi & Gao, Zhiyong & Zhang, Linlin, 2016. "Effects of branch removal on water use of rain-fed jujube (Ziziphus jujuba Mill.) plantations in Chinese semiarid Loess Plateau region," Agricultural Water Management, Elsevier, vol. 178(C), pages 258-270.
    7. Xing, Liwen & Cui, Ningbo & Liu, Chunwei & Zhao, Lu & Guo, Li & Du, Taisheng & Zhan, Cun & Wu, Zongjun & Wen, Shenglin & Jiang, Shouzheng, 2022. "Estimation of daily apple tree transpiration in the Loess Plateau region of China using deep learning models," Agricultural Water Management, Elsevier, vol. 273(C).
    8. Xing, Liwen & Cui, Ningbo & Liu, Chunwei & Guo, Li & Zhao, Long & Wu, Zongjun & Jiang, Xuelian & Wen, Shenglin & Zhao, Lu & Gong, Daozhi, 2024. "Estimating daily kiwifruit evapotranspiration under regulated deficit irrigation strategy using optimized surface resistance based model," Agricultural Water Management, Elsevier, vol. 295(C).
    9. Chen, Dianyu & Wang, Youke & Liu, Shouyang & Wei, Xinguang & Wang, Xing, 2014. "Response of relative sap flow to meteorological factors under different soil moisture conditions in rainfed jujube (Ziziphus jujuba Mill.) plantations in semiarid Northwest China," Agricultural Water Management, Elsevier, vol. 136(C), pages 23-33.
    10. Dong, Juan & Xing, Liwen & Cui, Ningbo & Guo, Li & Liang, Chuan & Zhao, Lu & Wang, Zhihui & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using optimized empirical methods with a novel improved Grey Wolf Algorithm in four climatic regions of China," Agricultural Water Management, Elsevier, vol. 291(C).
    11. Chen, Dianyu & Hsu, Kuolin & Duan, Xingwu & Wang, Youke & Wei, Xinguang & Muhammad, Saifullah, 2020. "Bayesian analysis of jujube canopy transpiration models: Does embedding the key environmental factor in Jarvis canopy resistance sub-model always associate with improving transpiration modeling?," Agricultural Water Management, Elsevier, vol. 234(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jingying & Chen, Dianyu & Hu, Xiaotao & Qiu, Lucheng & Wang, Shujian & Zhu, Xuanrong & Zhuo, La & Zhang, Dongyan & Wu, Linzhe & Zhang, Linlin, 2025. "Application of various canopy resistance calculation methods in vineyard evapotranspiration simulation at daily scale in Northwest China," Agricultural Water Management, Elsevier, vol. 307(C).
    2. Xing, Liwen & Cui, Ningbo & Liu, Chunwei & Guo, Li & Zhao, Long & Wu, Zongjun & Jiang, Xuelian & Wen, Shenglin & Zhao, Lu & Gong, Daozhi, 2024. "Estimating daily kiwifruit evapotranspiration under regulated deficit irrigation strategy using optimized surface resistance based model," Agricultural Water Management, Elsevier, vol. 295(C).
    3. Xing, Liwen & Zhao, Lu & Cui, Ningbo & Liu, Chunwei & Guo, Li & Du, Taisheng & Wu, Zongjun & Gong, Daozhi & Jiang, Shouzheng, 2023. "Apple tree transpiration estimated using the Penman-Monteith model integrated with optimized jarvis model," Agricultural Water Management, Elsevier, vol. 276(C).
    4. Zhou, Hanmi & Ma, Linshuang & Niu, Xiaoli & Xiang, Youzhen & Chen, Jiageng & Su, Yumin & Li, Jichen & Lu, Sibo & Chen, Cheng & Wu, Qi, 2024. "A novel hybrid model combined with ensemble embedded feature selection method for estimating reference evapotranspiration in the North China Plain," Agricultural Water Management, Elsevier, vol. 296(C).
    5. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Wu, Lifeng & Zou, Yufeng & Zhuang, Qianlai, 2021. "Estimation of rainfed maize transpiration under various mulching methods using modified Jarvis-Stewart model and hybrid support vector machine model with whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 249(C).
    6. Dong, Juan & Zhu, Yuanjun & Cui, Ningbo & Jia, Xiaoxu & Guo, Li & Qiu, Rangjian & Shao, Ming’an, 2024. "Estimating crop evapotranspiration of wheat-maize rotation system using hybrid convolutional bidirectional Long Short-Term Memory network with grey wolf algorithm in Chinese Loess Plateau region," Agricultural Water Management, Elsevier, vol. 301(C).
    7. Chen, Dianyu & Hsu, Kuolin & Duan, Xingwu & Wang, Youke & Wei, Xinguang & Muhammad, Saifullah, 2020. "Bayesian analysis of jujube canopy transpiration models: Does embedding the key environmental factor in Jarvis canopy resistance sub-model always associate with improving transpiration modeling?," Agricultural Water Management, Elsevier, vol. 234(C).
    8. Xing, Liwen & Cui, Ningbo & Liu, Chunwei & Zhao, Lu & Guo, Li & Du, Taisheng & Zhan, Cun & Wu, Zongjun & Wen, Shenglin & Jiang, Shouzheng, 2022. "Estimation of daily apple tree transpiration in the Loess Plateau region of China using deep learning models," Agricultural Water Management, Elsevier, vol. 273(C).
    9. Dong, Juan & Xing, Liwen & Cui, Ningbo & Zhao, Lu & Guo, Li & Wang, Zhihui & Du, Taisheng & Tan, Mingdong & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using improved convolutional bidirectional long short-term memory network by multi-head attention mechanism in the four climatic zones of China," Agricultural Water Management, Elsevier, vol. 292(C).
    10. Chen, Dianyu & Hu, Xiaotao & Duan, Xingwu & Yang, Daxin & Wang, Youke & Wang, Xing & Saifullah, Muhammad, 2024. "Improving canopy transpiration model performance by considering concurrent hot and dry conditions," Agricultural Systems, Elsevier, vol. 217(C).
    11. Hou, Panpan & Chen, Dianyu & Wei, Xuehui & Hu, Xiaotao & Duan, Xingwu & Zhang, Jingying & Qiu, Lucheng & Zhang, Linlin, 2023. "Transpiration characteristics and environmental controls of orange orchards in the dry-hot valley region of southwest China," Agricultural Water Management, Elsevier, vol. 288(C).
    12. Tahiri, Adel Zeggaf & Anyoji, H. & Yasuda, H., 2006. "Fixed and variable light extinction coefficients for estimating plant transpiration and soil evaporation under irrigated maize," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 186-192, July.
    13. Gao, Lei & Zhao, Peng & Kang, Shaozhong & Li, Sien & Tong, Ling & Ding, Risheng & Lu, Hongna, 2019. "Surface soil water content dominates the difference between ecosystem and canopy water use efficiency in a sparse vineyard," Agricultural Water Management, Elsevier, vol. 226(C).
    14. Li, Xianyue & Yang, Peiling & Ren, Shumei & Li, Yunkai & Liu, Honglu & Du, Jun & Li, Pingfeng & Wang, Caiyuan & Ren, Liang, 2010. "Modeling cherry orchard evapotranspiration based on an improved dual-source model," Agricultural Water Management, Elsevier, vol. 98(1), pages 12-18, December.
    15. Fábio Prataviera & Aline Martineli Batista & Edwin M. M. Ortega & Gauss M. Cordeiro & Bruno Montoani Silva, 2023. "The Logit Exponentiated Power Exponential Regression with Applications," Annals of Data Science, Springer, vol. 10(3), pages 713-735, June.
    16. Chen, Dianyu & Wang, Youke & Zhang, Xue & Wei, Xinguang & Duan, Xingwu & Muhammad, Saifullah, 2021. "Understory mowing controls soil drying in a rainfed jujube agroforestry system in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 246(C).
    17. Sara, Ourrai & Bouchra, Aithssaine & Abdelhakim, Amazirh & Salah, Er-RAKI & Lhoussaine, Bouchaou & Frederic, Jacob & Abdelghani, Chehbouni, 2024. "Assessment of the modified two-source energy balance (TSEB) model for estimating evapotranspiration and its components over an irrigated olive orchard in Morocco," Agricultural Water Management, Elsevier, vol. 298(C).
    18. Min Tang & Hongchen Li & Chao Zhang & Xining Zhao & Xiaodong Gao & Pute Wu, 2021. "Mulching Measures Improve Soil Moisture in Rain-Fed Jujube ( Ziziphus jujuba Mill.) Orchards in the Loess Hilly Region of China," Sustainability, MDPI, vol. 13(2), pages 1-13, January.
    19. Xiang, Keyu & Li, Yi & Horton, Robert & Feng, Hao, 2020. "Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review," Agricultural Water Management, Elsevier, vol. 232(C).
    20. Zhao, Peng & Kang, Shaozhong & Li, Sien & Ding, Risheng & Tong, Ling & Du, Taisheng, 2018. "Seasonal variations in vineyard ET partitioning and dual crop coefficients correlate with canopy development and surface soil moisture," Agricultural Water Management, Elsevier, vol. 197(C), pages 19-33.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:306:y:2024:i:c:s0378377424005298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.