IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v280y2023ics0378377423000707.html
   My bibliography  Save this article

Optimizing deficit irrigation and regulated deficit irrigation methods increases water productivity in maize

Author

Listed:
  • Wang, Feng
  • Meng, Haofeng
  • Xie, Ruizhi
  • Wang, Keru
  • Ming, Bo
  • Hou, Peng
  • Xue, Jun
  • Li, Shaokun

Abstract

At present, maize yields as high as 15.0 Mg ha−1 can be achieved under fully irrigated conditions in China. However, due to water restrictions, exploring appropriate water-saving irrigation methods is of great significance. Here, we sought to test the ability of several irrigation regimes to maintain high grain yield while increasing water productivity (WPc). Two water-saving irrigation methods, deficit irrigation (DI) and regulated deficit irrigation (RDI), were optimized based on changes in maize water consumption and soil water content over the growing season. The experiments were carried out in one of China's primary spring maize-producing areas (Qitai, Xinjiang) in 2019 and 2020, with mulched drip irrigation and dense planting (12 × 104 plants ha−1) adopted in both experiments. The control (CK) treatment consisted of the application of 540 mm of water during each irrigation interval. Compared with CK, the soil water content (SWC) in the 0–100 cm (particularly 0–60 cm) soil layers were lower during the water-insensitive growth periods (6th leaf-tasseling and milk-maturity stage) under both optimized DI and RDI. Furthermore, the daily crop evapotranspiration (DCE), phase water-consumption coefficient (Kp), and ineffective crop evapotranspiration (ETc) were reduced by 12.6–35.1%, 3.4–9.9%, and 6.7–16.6%, respectively. Both the maximum leaf area index (LAImax) and biomass accumulation were maintained during the 6th leaf-milk stage. Under optimized DI and RDI, high maize yield was maintained (>15.0 Mg ha−1), WPc was increased (>2.7 Kg m−3), and irrigation water productivity (WPI) was increased by 10.3–33.4% and 36.0–41.3%, respectively. Optimized DI resulted in higher maize yields, but optimized RDI used less irrigation water. We propose that these optimized irrigation methods can improve maize yield and WPc in arid and semi-arid production areas.

Suggested Citation

  • Wang, Feng & Meng, Haofeng & Xie, Ruizhi & Wang, Keru & Ming, Bo & Hou, Peng & Xue, Jun & Li, Shaokun, 2023. "Optimizing deficit irrigation and regulated deficit irrigation methods increases water productivity in maize," Agricultural Water Management, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:agiwat:v:280:y:2023:i:c:s0378377423000707
    DOI: 10.1016/j.agwat.2023.108205
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423000707
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108205?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    2. Pandey, R. K. & Maranville, J. W. & Chetima, M. M., 2000. "Deficit irrigation and nitrogen effects on maize in a Sahelian environment: II. Shoot growth, nitrogen uptake and water extraction," Agricultural Water Management, Elsevier, vol. 46(1), pages 15-27, November.
    3. Pandey, R. K. & Maranville, J. W. & Admou, A., 2000. "Deficit irrigation and nitrogen effects on maize in a Sahelian environment: I. Grain yield and yield components," Agricultural Water Management, Elsevier, vol. 46(1), pages 1-13, November.
    4. Karam, Fadi & Breidy, Joelle & Stephan, Chafic & Rouphael, Joe, 2003. "Evapotranspiration, yield and water use efficiency of drip irrigated corn in the Bekaa Valley of Lebanon," Agricultural Water Management, Elsevier, vol. 63(2), pages 125-137, December.
    5. Wei, Zheng & Paredes, Paula & Liu, Yu & Chi, Wei Wei & Pereira, Luis S., 2015. "Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain," Agricultural Water Management, Elsevier, vol. 147(C), pages 43-53.
    6. Dagdelen, Necdet & Yilmaz, Ersel & Sezgin, Fuat & Gurbuz, Talih, 2006. "Water-yield relation and water use efficiency of cotton (Gossypium hirsutum L.) and second crop corn (Zea mays L.) in western Turkey," Agricultural Water Management, Elsevier, vol. 82(1-2), pages 63-85, April.
    7. Pardo, J.J. & Martínez-Romero, A. & Léllis, B.C. & Tarjuelo, J.M. & Domínguez, A., 2020. "Effect of the optimized regulated deficit irrigation methodology on water use in barley under semiarid conditions," Agricultural Water Management, Elsevier, vol. 228(C).
    8. Wang, Feng & Xiao, Junfu & Ming, Bo & Xie, Ruizhi & Wang, Keru & Hou, Peng & Liu, Guangzhou & Zhang, Guoqiang & Chen, Jianglu & Liu, Wanmao & Yang, Yunshan & Qin, Anzhen & Li, Shaokun, 2021. "Grain yields and evapotranspiration dynamics of drip-irrigated maize under high plant density across arid to semi-humid climates," Agricultural Water Management, Elsevier, vol. 247(C).
    9. Payero, Jose O. & Melvin, Steven R. & Irmak, Suat & Tarkalson, David, 2006. "Yield response of corn to deficit irrigation in a semiarid climate," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 101-112, July.
    10. Benjamin, J.G. & Nielsen, D.C. & Vigil, M.F. & Mikha, M.M. & Calderon, F., 2015. "Cumulative deficit irrigation effects on corn biomass and grain yield under two tillage systems," Agricultural Water Management, Elsevier, vol. 159(C), pages 107-114.
    11. Wang, Feng & Xie, Ruizhi & Ming, Bo & Wang, Keru & Hou, Peng & Chen, Jianglu & Liu, Guangzhou & Zhang, Guoqiang & Xue, Jun & Li, Shaokun, 2021. "Dry matter accumulation after silking and kernel weight are the key factors for increasing maize yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 254(C).
    12. Oktem, A., 2008. "Effect of water shortage on yield, and protein and mineral compositions of drip-irrigated sweet corn in sustainable agricultural systems," Agricultural Water Management, Elsevier, vol. 95(9), pages 1003-1010, September.
    13. Domínguez, A. & de Juan, J.A. & Tarjuelo, J.M. & Martínez, R.S. & Martínez-Romero, A., 2012. "Determination of optimal regulated deficit irrigation strategies for maize in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 67-77.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Hongyan & Zheng, Bingyan & Nie, Weibo & Fei, Liangjun & Shan, Yuyang & Li, Ge & Liang, Fei, 2024. "Optimization of maize irrigation strategy in Xinjiang, China by AquaCrop based on a four-year study," Agricultural Water Management, Elsevier, vol. 297(C).
    2. Jiao, Fengli & Ding, Risheng & Du, Taisheng & Kang, Jian & Tong, Ling & Gao, Jia & Shao, Jie, 2024. "Multi-growth stage regulated deficit irrigation improves maize water productivity in an arid region of China," Agricultural Water Management, Elsevier, vol. 297(C).
    3. Wang, Maojian & Shi, Wei & Kamran, Muhammad & Chang, Shenghua & Jia, Qianmin & Hou, Fujiang, 2024. "Effects of intercropping and regulated deficit irrigation on the yield, water and land resource utilization, and economic benefits of forage maize in arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 298(C).
    4. Wang, Feng & Wang, Yulong & Lyu, Hanqiang & Fan, Zhilong & Hu, Falong & He, Wei & Yin, Wen & Zhao, Cai & Chai, Qiang & Yu, Aizhong, 2023. "No-tillage mulch with leguminous green manure retention reduces soil evaporation and increases yield and water productivity of maize," Agricultural Water Management, Elsevier, vol. 290(C).
    5. Zeleke, Ketema & Nendel, Claas, 2024. "Yield response and water productivity of soybean (Glycine max L.) to deficit irrigation and sowing time in south-eastern Australia," Agricultural Water Management, Elsevier, vol. 296(C).
    6. Gao, Jia & Liu, Ninggang & Wang, Xianqi & Niu, Zuoyuan & Liao, Qi & Ding, Risheng & Du, Taisheng & Kang, Shaozhong & Tong, Ling, 2024. "Maintaining grain number by reducing grain abortion is the key to improve water use efficiency of maize under deficit irrigation and salt stress," Agricultural Water Management, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Hongyan & Zheng, Bingyan & Nie, Weibo & Fei, Liangjun & Shan, Yuyang & Li, Ge & Liang, Fei, 2024. "Optimization of maize irrigation strategy in Xinjiang, China by AquaCrop based on a four-year study," Agricultural Water Management, Elsevier, vol. 297(C).
    2. El-Hendawy, Salah E. & Schmidhalter, Urs, 2010. "Optimal coupling combinations between irrigation frequency and rate for drip-irrigated maize grown on sandy soil," Agricultural Water Management, Elsevier, vol. 97(3), pages 439-448, March.
    3. Kresović, Branka & Tapanarova, Angelina & Tomić, Zorica & Životić, Ljubomir & Vujović, Dragan & Sredojević, Zorica & Gajić, Boško, 2016. "Grain yield and water use efficiency of maize as influenced by different irrigation regimes through sprinkler irrigation under temperate climate," Agricultural Water Management, Elsevier, vol. 169(C), pages 34-43.
    4. Oktem, A., 2008. "Effect of water shortage on yield, and protein and mineral compositions of drip-irrigated sweet corn in sustainable agricultural systems," Agricultural Water Management, Elsevier, vol. 95(9), pages 1003-1010, September.
    5. Wang, Feng & Xie, Ruizhi & Ming, Bo & Wang, Keru & Hou, Peng & Chen, Jianglu & Liu, Guangzhou & Zhang, Guoqiang & Xue, Jun & Li, Shaokun, 2021. "Dry matter accumulation after silking and kernel weight are the key factors for increasing maize yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 254(C).
    6. Gheysari, Mahdi & Sadeghi, Sayed-Hossein & Loescher, Henry W. & Amiri, Samia & Zareian, Mohammad Javad & Majidi, Mohammad M. & Asgarinia, Parvaneh & Payero, Jose O., 2017. "Comparison of deficit irrigation management strategies on root, plant growth and biomass productivity of silage maize," Agricultural Water Management, Elsevier, vol. 182(C), pages 126-138.
    7. Gheysari, Mahdi & Mirlatifi, Seyed Majid & Bannayan, Mohammad & Homaee, Mehdi & Hoogenboom, Gerrit, 2009. "Interaction of water and nitrogen on maize grown for silage," Agricultural Water Management, Elsevier, vol. 96(5), pages 809-821, May.
    8. Comas, Louise H. & Trout, Thomas J. & DeJonge, Kendall C. & Zhang, Huihui & Gleason, Sean M., 2019. "Water productivity under strategic growth stage-based deficit irrigation in maize," Agricultural Water Management, Elsevier, vol. 212(C), pages 433-440.
    9. Robel Admasu & Abraham W Michael & Tilahun Hordofa, 2019. "Senior Irrigation Researcher, Melkassa Agricultural Research Center, Ethiopia," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 16(4), pages 83-87, January.
    10. Gheysari, Mahdi & Pirnajmedin, Fatemeh & Movahedrad, Hamid & Majidi, Mohammad Mahdi & Zareian, Mohammad Javad, 2021. "Crop yield and irrigation water productivity of silage maize under two water stress strategies in semi-arid environment: Two different pot and field experiments," Agricultural Water Management, Elsevier, vol. 255(C).
    11. Hao, Baozhen & Ma, Jingli & Si, Shihua & Wang, Xiaojie & Wang, Shuli & Li, Fengmei & Jiang, Lina, 2024. "Response of grain yield and water productivity to plant density in drought-tolerant maize cultivar under irrigated and rainfed conditions," Agricultural Water Management, Elsevier, vol. 298(C).
    12. Sampathkumar, T. & Pandian, B.J. & Rangaswamy, M.V. & Manickasundaram, P. & Jeyakumar, P., 2013. "Influence of deficit irrigation on growth, yield and yield parameters of cotton–maize cropping sequence," Agricultural Water Management, Elsevier, vol. 130(C), pages 90-102.
    13. Mansouri-Far, Cyrus & Modarres Sanavy, Seyed Ali Mohammad & Saberali, Seyed Farhad, 2010. "Maize yield response to deficit irrigation during low-sensitive growth stages and nitrogen rate under semi-arid climatic conditions," Agricultural Water Management, Elsevier, vol. 97(1), pages 12-22, January.
    14. Léllis, B.C. & Martínez-Romero, A. & Schwartz, R.C. & Pardo, J.J. & Tarjuelo, J.M. & Domínguez, A., 2022. "Effect of the optimized regulated deficit irrigation methodology on water use in garlic," Agricultural Water Management, Elsevier, vol. 260(C).
    15. Domínguez, A. & de Juan, J.A. & Tarjuelo, J.M. & Martínez, R.S. & Martínez-Romero, A., 2012. "Determination of optimal regulated deficit irrigation strategies for maize in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 67-77.
    16. Manning, Dale T. & Lurbé, Salvador & Comas, Louise H. & Trout, Thomas J. & Flynn, Nora & Fonte, Steven J., 2018. "Economic viability of deficit irrigation in the Western US," Agricultural Water Management, Elsevier, vol. 196(C), pages 114-123.
    17. Lucia Ottaiano & Ida Di Mola & Chiara Cirillo & Eugenio Cozzolino & Mauro Mori, 2021. "Yield Performance and Physiological Response of a Maize Early Hybrid Grown in Tunnel and Open Air under Different Water Regimes," Sustainability, MDPI, vol. 13(20), pages 1-15, October.
    18. Ran, Junjun & Ran, Hui & Ma, Longfei & Jennings, Stewart A. & Yu, Tinggao & Deng, Xin & Yao, Ning & Hu, Xiaotao, 2023. "Quantifying water productivity and nitrogen uptake of maize under water and nitrogen stress in arid Northwest China," Agricultural Water Management, Elsevier, vol. 285(C).
    19. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    20. Greaves, Geneille E. & Wang, Yu-Min, 2017. "Effect of regulated deficit irrigation scheduling on water use of corn in southern Taiwan tropical environment," Agricultural Water Management, Elsevier, vol. 188(C), pages 115-125.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:280:y:2023:i:c:s0378377423000707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.