IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v159y2015icp107-114.html
   My bibliography  Save this article

Cumulative deficit irrigation effects on corn biomass and grain yield under two tillage systems

Author

Listed:
  • Benjamin, J.G.
  • Nielsen, D.C.
  • Vigil, M.F.
  • Mikha, M.M.
  • Calderon, F.

Abstract

Deficit irrigation (DI) is sometimes used to cope with dwindling irrigation water supplies or limited water allocations. A study at Akron, Colorado, USA from 2001 to 2006 investigated the effects of consecutive years of DI on soil water use, soil water content, biomass production, grain yield and water use efficiency (WUE) in a continuous corn system. In 2001, DI and full irrigation (FI) had the same grain yield. In 2002, DI reduced grain yield by 20% relative to FI. By 2006, continued DI reduced grain yield by 65% compared with FI. Significant increases in soil water storage during the non-crop period occurred only in 2005 and 2006. This resulted in a slow but continual decrease in soil water storage as the years progressed. By 2006, soil water storage in the 60- to 90-cm depth remained lower for DI than for FI during the entire growing season. WUE declined for DI compared with FI over the years. WUE was the same for DI and FI in 2001, but WUE for DI declined to only 65% of FI by 2006. DI may be an option for short term or emergency situations when insufficient irrigation water is available for FI in one year. However, long-term use of DI, without replenishment of stored soil water during the non-cropped period, was detrimental to both corn production and water use efficiency under these experimental conditions.

Suggested Citation

  • Benjamin, J.G. & Nielsen, D.C. & Vigil, M.F. & Mikha, M.M. & Calderon, F., 2015. "Cumulative deficit irrigation effects on corn biomass and grain yield under two tillage systems," Agricultural Water Management, Elsevier, vol. 159(C), pages 107-114.
  • Handle: RePEc:eee:agiwat:v:159:y:2015:i:c:p:107-114
    DOI: 10.1016/j.agwat.2015.05.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415300159
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.05.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Payero, J.O. & Tarkalson, D.D. & Irmak, S. & Davison, D. & Petersen, J.L., 2009. "Effect of timing of a deficit-irrigation allocation on corn evapotranspiration, yield, water use efficiency and dry mass," Agricultural Water Management, Elsevier, vol. 96(10), pages 1387-1397, October.
    2. Nielsen, David C. & Vigil, Merle F. & Benjamin, Joseph G., 2009. "The variable response of dryland corn yield to soil water content at planting," Agricultural Water Management, Elsevier, vol. 96(2), pages 330-336, February.
    3. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    4. Payero, Jose O. & Melvin, Steven R. & Irmak, Suat & Tarkalson, David, 2006. "Yield response of corn to deficit irrigation in a semiarid climate," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 101-112, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sigua, G.C. & Stone, K.C. & Bauer, P.J. & Szogi, A.A. & Shumaker, P.D., 2017. "Impacts of irrigation scheduling on pore water nitrate and phosphate in coastal plain region of the United States," Agricultural Water Management, Elsevier, vol. 186(C), pages 75-85.
    2. Sun, Zhencai & Zhang, Yinghua & Zhang, Zhen & Gao, Yanmei & Yang, Youming & Han, Meikun & Wang, Zhimin, 2019. "Significance of disposable presowing irrigation in wheat in increasing water use efficiency and maintaining high yield under winter wheat-summer maize rotation in the North China Plain," Agricultural Water Management, Elsevier, vol. 225(C).
    3. Oker, Tobias E. & Kisekka, Isaya & Sheshukov, Aleksey Y. & Aguilar, Jonathan & Rogers, Danny H., 2018. "Evaluation of maize production under mobile drip irrigation," Agricultural Water Management, Elsevier, vol. 210(C), pages 11-21.
    4. Araya, A. & Kisekka, Isaya & Gowda, Prasanna H. & Prasad, P.V. Vara, 2017. "Evaluation of water-limited cropping systems in a semi-arid climate using DSSAT-CSM," Agricultural Systems, Elsevier, vol. 150(C), pages 86-98.
    5. Liao, Renkuan & Zhang, Shirui & Zhang, Xin & Wang, Mingfei & Wu, Huarui & Zhangzhong, Lili, 2021. "Development of smart irrigation systems based on real-time soil moisture data in a greenhouse: Proof of concept," Agricultural Water Management, Elsevier, vol. 245(C).
    6. Irmak, Suat & Kukal, Meetpal S. & Mohammed, Ali T. & Djaman, Koffi, 2019. "Disk-till vs. no-till maize evapotranspiration, microclimate, grain yield, production functions and water productivity," Agricultural Water Management, Elsevier, vol. 216(C), pages 177-195.
    7. Liu, Ziqiang & Jia, Guodong & Yu, Xinxiao, 2020. "Water uptake and WUE of Apple tree-Corn Agroforestry in the Loess hilly region of China," Agricultural Water Management, Elsevier, vol. 234(C).
    8. Wang, Feng & Meng, Haofeng & Xie, Ruizhi & Wang, Keru & Ming, Bo & Hou, Peng & Xue, Jun & Li, Shaokun, 2023. "Optimizing deficit irrigation and regulated deficit irrigation methods increases water productivity in maize," Agricultural Water Management, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Comas, Louise H. & Trout, Thomas J. & DeJonge, Kendall C. & Zhang, Huihui & Gleason, Sean M., 2019. "Water productivity under strategic growth stage-based deficit irrigation in maize," Agricultural Water Management, Elsevier, vol. 212(C), pages 433-440.
    2. Saseendran, S.A. & Ahuja, Lajpat R. & Ma, Liwang & Trout, Thomas J. & McMaster, Gregory S. & Nielsen, David C. & Ham, Jay M. & Andales, Allan A. & Halvorson, Ardel D. & Chávez, José L. & Fang, Quanxia, 2015. "Developing and normalizing average corn crop water production functions across years and locations using a system model," Agricultural Water Management, Elsevier, vol. 157(C), pages 65-77.
    3. Motazedian, Azam & Kazemeini, Seyed Abdolreza & Bahrani, Mohammad Jafar, 2019. "Sweet corn growth and GrainYield as influenced by irrigation and wheat residue management," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    4. Murley, Cameron B. & Sharma, Sumit & Warren, Jason G. & Arnall, Daryl B. & Raun, William R., 2018. "Yield response of corn and grain sorghum to row offsets on subsurface drip laterals," Agricultural Water Management, Elsevier, vol. 208(C), pages 357-362.
    5. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    6. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    7. Carlos Bautista-Capetillo & Hugo Márquez-Villagrana & Anuard Pacheco-Guerrero & Julián González-Trinidad & Hugo Júnez-Ferreira & Manuel Zavala-Trejo, 2018. "Cropping System Diversification: Water Consumption against Crop Production," Sustainability, MDPI, vol. 10(7), pages 1-11, June.
    8. Kukal, M.S. & Irmak, S., 2020. "Characterization of water use and productivity dynamics across four C3 and C4 row crops under optimal growth conditions," Agricultural Water Management, Elsevier, vol. 227(C).
    9. Sharma, Vasudha & Irmak, Suat, 2021. "Comparative analyses of variable and fixed rate irrigation and nitrogen management for maize in different soil types: Part II. Growth, grain yield, evapotranspiration, production functions and water p," Agricultural Water Management, Elsevier, vol. 246(C).
    10. Hao, Baozhen & Xue, Qingwu & Marek, Thomas H. & Jessup, Kirk E. & Hou, Xiaobo & Xu, Wenwei & Bynum, Edsel D. & Bean, Brent W., 2015. "Soil water extraction, water use, and grain yield by drought-tolerant maize on the Texas High Plains," Agricultural Water Management, Elsevier, vol. 155(C), pages 11-21.
    11. Mohammed, Ali T. & Irmak, Suat, 2022. "Maize response to irrigation and nitrogen under center pivot, subsurface drip and furrow irrigation: Water productivity, basal evapotranspiration and yield response factors," Agricultural Water Management, Elsevier, vol. 271(C).
    12. Manning, Dale T. & Lurbé, Salvador & Comas, Louise H. & Trout, Thomas J. & Flynn, Nora & Fonte, Steven J., 2018. "Economic viability of deficit irrigation in the Western US," Agricultural Water Management, Elsevier, vol. 196(C), pages 114-123.
    13. Kresović, Branka & Tapanarova, Angelina & Tomić, Zorica & Životić, Ljubomir & Vujović, Dragan & Sredojević, Zorica & Gajić, Boško, 2016. "Grain yield and water use efficiency of maize as influenced by different irrigation regimes through sprinkler irrigation under temperate climate," Agricultural Water Management, Elsevier, vol. 169(C), pages 34-43.
    14. Hergert, G.W. & Margheim, J.F. & Pavlista, A.D. & Martin, D.L. & Supalla, R.J. & Isbell, T.A., 2016. "Yield, irrigation response, and water productivity of deficit to fully irrigated spring canola," Agricultural Water Management, Elsevier, vol. 168(C), pages 96-103.
    15. Paredes, P. & Rodrigues, G.C. & Alves, I. & Pereira, L.S., 2014. "Partitioning evapotranspiration, yield prediction and economic returns of maize under various irrigation management strategies," Agricultural Water Management, Elsevier, vol. 135(C), pages 27-39.
    16. DeJonge, K.C. & Ascough, J.C. & Andales, A.A. & Hansen, N.C. & Garcia, L.A. & Arabi, M., 2012. "Improving evapotranspiration simulations in the CERES-Maize model under limited irrigation," Agricultural Water Management, Elsevier, vol. 115(C), pages 92-103.
    17. Kifle, Mulubrehan & Gebretsadikan, T.G., 2016. "Yield and water use efficiency of furrow irrigated potato under regulated deficit irrigation, Atsibi-Wemberta, North Ethiopia," Agricultural Water Management, Elsevier, vol. 170(C), pages 133-139.
    18. Garg, N.K. & Dadhich, Sushmita M., 2014. "A proposed method to determine yield response factors of different crops under deficit irrigation using inverse formulation approach," Agricultural Water Management, Elsevier, vol. 137(C), pages 68-74.
    19. Gheysari, Mahdi & Sadeghi, Sayed-Hossein & Loescher, Henry W. & Amiri, Samia & Zareian, Mohammad Javad & Majidi, Mohammad M. & Asgarinia, Parvaneh & Payero, Jose O., 2017. "Comparison of deficit irrigation management strategies on root, plant growth and biomass productivity of silage maize," Agricultural Water Management, Elsevier, vol. 182(C), pages 126-138.
    20. Payero, José O. & Irmak, Suat, 2013. "Daily energy fluxes, evapotranspiration and crop coefficient of soybean," Agricultural Water Management, Elsevier, vol. 129(C), pages 31-43.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:159:y:2015:i:c:p:107-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.