IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13621-d1238219.html
   My bibliography  Save this article

Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash

Author

Listed:
  • Nahushananda Chakravarthy H G

    (Department of Civil Engineering, Siddaganga Institute of Technology, Tumakuru 572103, India)

  • Karthik M Seenappa

    (Department of Civil Engineering, Siddaganga Institute of Technology, Tumakuru 572103, India)

  • Sujay Raghavendra Naganna

    (Department of Civil Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal 576104, India)

  • Dayananda Pruthviraja

    (Department of Information Technology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal 576104, India)

Abstract

Self-compacting concrete (SCC) is a special form of high-performance concrete that is highly efficient in its filling, flowing, and passing abilities. In this study, an attempt has been made to model the compressive strength (CS) of SCC mixes using machine-learning approaches. The SCC mixes were designed considering lightweight expandable clay aggregate (LECA) as a partial replacement for coarse aggregate; ground granulated blast-furnace slag (GGBS) as a partial replacement for binding material (cement); and incinerated bio-medical waste ash (IBMWA) as a partial replacement for fine aggregate. LECA, GGBS, and IBMWA were replaced with coarse aggregate, cement, and fine aggregate, respectively at different substitution levels of 10%, 20%, and 30%. M30-grade SCC mixes were designed for two different water/binder ratios—0.40 and 0.45—and the CS of the SCC mixes was experimentally determined along with the fresh state properties assessed by slump-flow, L-box, J-ring, and V-funnel tests. The CS of the SCC mixes obtained from the experimental analysis was considered for machine learning (ML)-based modeling using paradigms such as artificial neural networks (ANN), gradient tree boosting (GTB), and CatBoost Regressor (CBR). The ML models were developed considering the compressive strength of SCC as the target parameter. The quantities of materials (in terms of %), water-to-binder ratio, and density of the SCC specimens were used as input variables to simulate the ML models. The results from the experimental analysis show that the optimum replacement percentages for cement, coarse, and fine aggregates were 30%, 10%, and 20%, respectively. The ML models were successful in modeling the compressive strength of SCC mixes with higher accuracy and the least errors. The CBR model performed relatively better than the other two ML models, with relatively higher efficiency (KGE = 0.9671) and the least error (mean absolute error = 0.52 MPa) during the testing phase.

Suggested Citation

  • Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13621-:d:1238219
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13621/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13621/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    2. Nhat-Duc Hoang, 2022. "Machine Learning-Based Estimation of the Compressive Strength of Self-Compacting Concrete: A Multi-Dataset Study," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansoor, Umer & Jamal, Arshad & Su, Junbiao & Sze, N.N. & Chen, Anthony, 2023. "Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations," Transport Policy, Elsevier, vol. 139(C), pages 21-38.
    2. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    3. Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
    4. Tim Voigt & Martin Kohlhase & Oliver Nelles, 2021. "Incremental DoE and Modeling Methodology with Gaussian Process Regression: An Industrially Applicable Approach to Incorporate Expert Knowledge," Mathematics, MDPI, vol. 9(19), pages 1-26, October.
    5. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    6. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    7. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    8. Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
    9. Smyl, Slawek & Hua, N. Grace, 2019. "Machine learning methods for GEFCom2017 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1424-1431.
    10. Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
    11. Eike Emrich & Christian Pierdzioch, 2016. "Volunteering, Match Quality, and Internet Use," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 136(2), pages 199-226.
    12. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
    13. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    14. Catherine Ikae & Jacques Savoy, 2022. "Gender identification on Twitter," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(1), pages 58-69, January.
    15. Martijn Kagie & Michiel Van Wezel, 2007. "Hedonic price models and indices based on boosting applied to the Dutch housing market," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 15(3‐4), pages 85-106, July.
    16. Matthias Bogaert & Michel Ballings & Dirk Van den Poel, 2018. "Evaluating the importance of different communication types in romantic tie prediction on social media," Annals of Operations Research, Springer, vol. 263(1), pages 501-527, April.
    17. Dursun Delen & Hamed M. Zolbanin & Durand Crosby & David Wright, 2021. "To imprison or not to imprison: an analytics model for drug courts," Annals of Operations Research, Springer, vol. 303(1), pages 101-124, August.
    18. Doruk Cengiz & Arindrajit Dube & Attila S. Lindner & David Zentler-Munro, 2021. "Seeing Beyond the Trees: Using Machine Learning to Estimate the Impact of Minimum Wages on Labor Market Outcomes," NBER Working Papers 28399, National Bureau of Economic Research, Inc.
    19. Zhou, Jing & Li, Wei & Wang, Jiaxin & Ding, Shuai & Xia, Chengyi, 2019. "Default prediction in P2P lending from high-dimensional data based on machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    20. Teng, Long, 2022. "Gradient boosting-based numerical methods for high-dimensional backward stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 426(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13621-:d:1238219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.