IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13621-d1238219.html
   My bibliography  Save this article

Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash

Author

Listed:
  • Nahushananda Chakravarthy H G

    (Department of Civil Engineering, Siddaganga Institute of Technology, Tumakuru 572103, India)

  • Karthik M Seenappa

    (Department of Civil Engineering, Siddaganga Institute of Technology, Tumakuru 572103, India)

  • Sujay Raghavendra Naganna

    (Department of Civil Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal 576104, India)

  • Dayananda Pruthviraja

    (Department of Information Technology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal 576104, India)

Abstract

Self-compacting concrete (SCC) is a special form of high-performance concrete that is highly efficient in its filling, flowing, and passing abilities. In this study, an attempt has been made to model the compressive strength (CS) of SCC mixes using machine-learning approaches. The SCC mixes were designed considering lightweight expandable clay aggregate (LECA) as a partial replacement for coarse aggregate; ground granulated blast-furnace slag (GGBS) as a partial replacement for binding material (cement); and incinerated bio-medical waste ash (IBMWA) as a partial replacement for fine aggregate. LECA, GGBS, and IBMWA were replaced with coarse aggregate, cement, and fine aggregate, respectively at different substitution levels of 10%, 20%, and 30%. M30-grade SCC mixes were designed for two different water/binder ratios—0.40 and 0.45—and the CS of the SCC mixes was experimentally determined along with the fresh state properties assessed by slump-flow, L-box, J-ring, and V-funnel tests. The CS of the SCC mixes obtained from the experimental analysis was considered for machine learning (ML)-based modeling using paradigms such as artificial neural networks (ANN), gradient tree boosting (GTB), and CatBoost Regressor (CBR). The ML models were developed considering the compressive strength of SCC as the target parameter. The quantities of materials (in terms of %), water-to-binder ratio, and density of the SCC specimens were used as input variables to simulate the ML models. The results from the experimental analysis show that the optimum replacement percentages for cement, coarse, and fine aggregates were 30%, 10%, and 20%, respectively. The ML models were successful in modeling the compressive strength of SCC mixes with higher accuracy and the least errors. The CBR model performed relatively better than the other two ML models, with relatively higher efficiency (KGE = 0.9671) and the least error (mean absolute error = 0.52 MPa) during the testing phase.

Suggested Citation

  • Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13621-:d:1238219
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13621/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13621/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    2. Nhat-Duc Hoang, 2022. "Machine Learning-Based Estimation of the Compressive Strength of Self-Compacting Concrete: A Multi-Dataset Study," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    2. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    3. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    4. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
    5. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    6. Cao, Jason & Tao, Tao, 2025. "Can an identified environmental correlate of car ownership serve as a practical planning tool?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 191(C).
    7. Dursun Delen & Hamed M. Zolbanin & Durand Crosby & David Wright, 2021. "To imprison or not to imprison: an analytics model for drug courts," Annals of Operations Research, Springer, vol. 303(1), pages 101-124, August.
    8. Doruk Cengiz & Arindrajit Dube & Attila Lindner & David Zentler-Munro, 2022. "Seeing beyond the Trees: Using Machine Learning to Estimate the Impact of Minimum Wages on Labor Market Outcomes," Journal of Labor Economics, University of Chicago Press, vol. 40(S1), pages 203-247.
    9. Zhou, Jing & Li, Wei & Wang, Jiaxin & Ding, Shuai & Xia, Chengyi, 2019. "Default prediction in P2P lending from high-dimensional data based on machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    10. Lu, Yingjie & Li, Tao & Hu, Hui & Zeng, Xuemei, 2023. "Short-term prediction of reference crop evapotranspiration based on machine learning with different decomposition methods in arid areas of China," Agricultural Water Management, Elsevier, vol. 279(C).
    11. Bohdan M. Pavlyshenko, 2019. "Machine-Learning Models for Sales Time Series Forecasting," Data, MDPI, vol. 4(1), pages 1-11, January.
    12. Sieun Lee & Eunhae Cho & Geunsoo Jang & Sangil Kim & Giphil Cho, 2022. "Early detection of norovirus outbreak using machine learning methods in South Korea," PLOS ONE, Public Library of Science, vol. 17(11), pages 1-12, November.
    13. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    14. Jason R. W. Merrick & Claire A. Dorsey & Bo Wang & Martha Grabowski & John R. Harrald, 2022. "Measuring Prediction Accuracy in a Maritime Accident Warning System," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 819-827, February.
    15. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    16. Adler, Werner & Lausen, Berthold, 2009. "Bootstrap estimated true and false positive rates and ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 718-729, January.
    17. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
    18. Andrea Sciandra & Alessio Surian & Livio Finos, 2021. "Supervised Machine Learning Methods to Disclose Action and Information in “U.N. 2030 Agenda” Social Media Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 689-699, August.
    19. Mirosław Parol & Paweł Piotrowski & Piotr Kapler & Mariusz Piotrowski, 2021. "Forecasting of 10-Second Power Demand of Highly Variable Loads for Microgrid Operation Control," Energies, MDPI, vol. 14(5), pages 1-29, February.
    20. Tsao, Yu-Chung & Chen, Yu-Kai & Chiu, Shih-Hao & Lu, Jye-Chyi & Vu, Thuy-Linh, 2022. "An innovative demand forecasting approach for the server industry," Technovation, Elsevier, vol. 110(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13621-:d:1238219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.