IDEAS home Printed from https://ideas.repec.org/a/kap/jgeosy/v20y2018i4d10.1007_s10109-018-0280-7.html
   My bibliography  Save this article

Geographically weighted elastic net logistic regression

Author

Listed:
  • Alexis Comber

    (University of Leeds)

  • Paul Harris

    (Rothamsted Research, North Wyke)

Abstract

This paper develops a localized approach to elastic net logistic regression, extending previous research describing a localized elastic net as an extension to a localized ridge regression or a localized lasso. All such models have the objective to capture data relationships that vary across space. Geographically weighted elastic net logistic regression is first evaluated through a simulation experiment and shown to provide a robust approach for local model selection and alleviating local collinearity, before application to two case studies: county-level voting patterns in the 2016 USA presidential election, examining the spatial structure of socio-economic factors associated with voting for Trump, and a species presence–absence data set linked to explanatory environmental and climatic factors at gridded locations covering mainland USA. The approach is compared with other logistic regressions. It improves prediction for the election case study only which exhibits much greater spatial heterogeneity in the binary response than the species case study. Model comparisons show that standard geographically weighted logistic regression over-estimated relationship non-stationarity because it fails to adequately deal with collinearity and model selection. Results are discussed in the context of predictor variable collinearity and selection and the heterogeneities that were observed. Ongoing work is investigating locally derived elastic net parameters.

Suggested Citation

  • Alexis Comber & Paul Harris, 2018. "Geographically weighted elastic net logistic regression," Journal of Geographical Systems, Springer, vol. 20(4), pages 317-341, October.
  • Handle: RePEc:kap:jgeosy:v:20:y:2018:i:4:d:10.1007_s10109-018-0280-7
    DOI: 10.1007/s10109-018-0280-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10109-018-0280-7
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10109-018-0280-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Bárcena & P. Menéndez & M. Palacios & F. Tusell, 2014. "Alleviating the effect of collinearity in geographically weighted regression," Journal of Geographical Systems, Springer, vol. 16(4), pages 441-466, October.
    2. Kenan Li & Nina S. N. Lam, 2018. "Geographically Weighted Elastic Net: A Variable-Selection and Modeling Method under the Spatially Nonstationary Condition," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 108(6), pages 1582-1600, November.
    3. David C Wheeler, 2007. "Diagnostic Tools and a Remedial Method for Collinearity in Geographically Weighted Regression," Environment and Planning A, , vol. 39(10), pages 2464-2481, October.
    4. Gollini, Isabella & Lu, Binbin & Charlton, Martin & Brunsdon, Christopher & Harris, Paul, 2015. "GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i17).
    5. David C Wheeler, 2009. "Simultaneous Coefficient Penalization and Model Selection in Geographically Weighted Regression: The Geographically Weighted Lasso," Environment and Planning A, , vol. 41(3), pages 722-742, March.
    6. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    7. C Brunsdon & A S Fotheringham & M Charlton, 1998. "Spatial Nonstationarity and Autoregressive Models," Environment and Planning A, , vol. 30(6), pages 957-973, June.
    8. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    9. David Wheeler & Michael Tiefelsdorf, 2005. "Multicollinearity and correlation among local regression coefficients in geographically weighted regression," Journal of Geographical Systems, Springer, vol. 7(2), pages 161-187, June.
    10. A. Stewart Fotheringham & Taylor M. Oshan, 2016. "Geographically weighted regression and multicollinearity: dispelling the myth," Journal of Geographical Systems, Springer, vol. 18(4), pages 303-329, October.
    11. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    12. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fekadu L. Bayisa & Markus Ådahl & Patrik Rydén & Ottmar Cronie, 2023. "Regularised Semi-parametric Composite Likelihood Intensity Modelling of a Swedish Spatial Ambulance Call Point Pattern," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(4), pages 664-683, December.
    2. Margaretha Ohyver & Purhadi & Achmad Choiruddin, 2025. "Parameter Estimation of Geographically and Temporally Weighted Elastic Net Ordinal Logistic Regression," Mathematics, MDPI, vol. 13(8), pages 1-13, April.
    3. Jitendra Rajput & Man Singh & K. Lal & Manoj Khanna & A. Sarangi & J. Mukherjee & Shrawan Singh, 2024. "Data-driven reference evapotranspiration (ET0) estimation: a comparative study of regression and machine learning techniques," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 12679-12706, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geniaux, Ghislain & Martinetti, Davide, 2018. "A new method for dealing simultaneously with spatial autocorrelation and spatial heterogeneity in regression models," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 74-85.
    2. Paul Harris & Bruno Lanfranco & Binbin Lu & Alexis Comber, 2020. "Influence of Geographical Effects in Hedonic Pricing Models for Grass-Fed Cattle in Uruguay," Agriculture, MDPI, vol. 10(7), pages 1-17, July.
    3. Alexis Comber & Khanh Chi & Man Q Huy & Quan Nguyen & Binbin Lu & Hoang H Phe & Paul Harris, 2020. "Distance metric choice can both reduce and induce collinearity in geographically weighted regression," Environment and Planning B, , vol. 47(3), pages 489-507, March.
    4. Christos Agiakloglou & Cleon Tsimbos & Apostolos Tsimpanos, 2019. "Evidence of spurious results along with spatially autocorrelated errors in the context of geographically weighted regression for two independent SAR(1) processes," Empirical Economics, Springer, vol. 57(5), pages 1613-1631, November.
    5. A. Stewart Fotheringham & Taylor M. Oshan, 2016. "Geographically weighted regression and multicollinearity: dispelling the myth," Journal of Geographical Systems, Springer, vol. 18(4), pages 303-329, October.
    6. Wenjie Wu & Guanpeng Dong & Wenzhong Zhang, 2017. "The puzzling heterogeneity of amenity capitalization effects on land markets," Papers in Regional Science, Wiley Blackwell, vol. 96, pages 135-153, March.
    7. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    8. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    9. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    10. Oshan, Taylor M. & Kang, Wei, 2024. "Scale and Correlation in Multiscale Geographically Weighted Regression (MGWR)," OSF Preprints cujby, Center for Open Science.
    11. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    12. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    13. Immanuel Bayer & Philip Groth & Sebastian Schneckener, 2013. "Prediction Errors in Learning Drug Response from Gene Expression Data – Influence of Labeling, Sample Size, and Machine Learning Algorithm," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-13, July.
    14. Mostafa Rezaei & Ivor Cribben & Michele Samorani, 2021. "A clustering-based feature selection method for automatically generated relational attributes," Annals of Operations Research, Springer, vol. 303(1), pages 233-263, August.
    15. Gustavo A. Alonso-Silverio & Víctor Francisco-García & Iris P. Guzmán-Guzmán & Elías Ventura-Molina & Antonio Alarcón-Paredes, 2021. "Toward Non-Invasive Estimation of Blood Glucose Concentration: A Comparative Performance," Mathematics, MDPI, vol. 9(20), pages 1-13, October.
    16. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    17. Karim Barigou & Stéphane Loisel & Yahia Salhi, 2020. "Parsimonious Predictive Mortality Modeling by Regularization and Cross-Validation with and without Covid-Type Effect," Risks, MDPI, vol. 9(1), pages 1-18, December.
    18. Gurgul Henryk & Machno Artur, 2017. "Trade Pattern on Warsaw Stock Exchange and Prediction of Number of Trades," Statistics in Transition New Series, Statistics Poland, vol. 18(1), pages 91-114, March.
    19. Michael Funke & Kadri Männasoo & Helery Tasane, 2023. "Regional Economic Impacts of the Øresund Cross-Border Fixed Link: Cui Bono?," CESifo Working Paper Series 10557, CESifo.
    20. Heinisch, Katja & Scaramella, Fabio & Schult, Christoph, 2025. "Assumption errors and forecast accuracy: A partial linear instrumental variable and double machine learning approach," IWH Discussion Papers 6/2025, Halle Institute for Economic Research (IWH).

    More about this item

    Keywords

    GWR; GW-ELNR; Elastic nets; Collinearity; Model selection;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jgeosy:v:20:y:2018:i:4:d:10.1007_s10109-018-0280-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.