IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i8p1345-d1638378.html
   My bibliography  Save this article

Parameter Estimation of Geographically and Temporally Weighted Elastic Net Ordinal Logistic Regression

Author

Listed:
  • Margaretha Ohyver

    (Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
    Department of Statistics, School of Computer Science, Bina Nusantara University, Jakarta Barat 11480, Indonesia)

  • Purhadi

    (Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia)

  • Achmad Choiruddin

    (Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia)

Abstract

Geographically and Temporally Weighted Elastic Net Ordinal Logistic Regression is a parsimonious ordinal logistic regression with consideration of the existence of spatial and temporal effects. This model has been developed with the following three considerations: the spatial effect, the temporal effect, and predictor selection. The last point prompted the use of Elastic Net regularization in choosing predictors while handling multicollinearity, which often arises when there are many predictors involved. The Elastic Net penalty combines ridge and LASSO penalties, leading to the determination of the appropriate λ E N and α E N . Therefore, the objective of this study is to determine the parameter estimator using Maximum Likelihood Estimation. The estimation process comprises defining the likelihood function, determining the natural logarithm of the likelihood function, and maximizing the function using Berndt–Hall–Hall–Hausman. These steps continue until the estimator converges on the values that maximize the likelihood function. This study contributes by developing an estimation framework that integrates spatial and temporal effects with Elastic Net regularization, allowing for improved model interpretation and stability. The findings provide an advanced methodological approach for ordinal logistic regression models that incorporate spatial and temporal dependencies. This framework is particularly useful for applications in fields such as economic forecasting, epidemiology, and environmental studies, where ordinal responses exhibit spatial and temporal patterns.

Suggested Citation

  • Margaretha Ohyver & Purhadi & Achmad Choiruddin, 2025. "Parameter Estimation of Geographically and Temporally Weighted Elastic Net Ordinal Logistic Regression," Mathematics, MDPI, vol. 13(8), pages 1-13, April.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:8:p:1345-:d:1638378
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/8/1345/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/8/1345/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexis Comber & Paul Harris, 2018. "Geographically weighted elastic net logistic regression," Journal of Geographical Systems, Springer, vol. 20(4), pages 317-341, October.
    2. Ujjwal Das & Kalyan Das, 2021. "Selection of influential variables in ordinal data with preponderance of zeros," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(1), pages 66-87, February.
    3. Kenan Li & Nina S. N. Lam, 2018. "Geographically Weighted Elastic Net: A Variable-Selection and Modeling Method under the Spatially Nonstationary Condition," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 108(6), pages 1582-1600, November.
    4. Jinting Zhang & Xiu Wu & T. Edwin Chow, 2021. "Space-Time Cluster’s Detection and Geographical Weighted Regression Analysis of COVID-19 Mortality on Texas Counties," IJERPH, MDPI, vol. 18(11), pages 1-21, May.
    5. Adewale F. Lukman & B. M. Golam Kibria & Cosmas K. Nziku & Muhammad Amin & Emmanuel T. Adewuyi & Rasha Farghali, 2023. "K-L Estimator: Dealing with Multicollinearity in the Logistic Regression Model," Mathematics, MDPI, vol. 11(2), pages 1-14, January.
    6. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    7. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexis Comber & Paul Harris, 2018. "Geographically weighted elastic net logistic regression," Journal of Geographical Systems, Springer, vol. 20(4), pages 317-341, October.
    2. Roger Beecham & Nick Williams & Alexis Comber, 2020. "Regionally-structured explanations behind area-level populism: An update to recent ecological analyses," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-20, March.
    3. Jitendra Rajput & Man Singh & K. Lal & Manoj Khanna & A. Sarangi & J. Mukherjee & Shrawan Singh, 2024. "Data-driven reference evapotranspiration (ET0) estimation: a comparative study of regression and machine learning techniques," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 12679-12706, May.
    4. Zhong, Yan & Sang, Huiyan & Cook, Scott J. & Kellstedt, Paul M., 2023. "Sparse spatially clustered coefficient model via adaptive regularization," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    5. Fekadu L. Bayisa & Markus Ådahl & Patrik Rydén & Ottmar Cronie, 2023. "Regularised Semi-parametric Composite Likelihood Intensity Modelling of a Swedish Spatial Ambulance Call Point Pattern," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(4), pages 664-683, December.
    6. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    7. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    8. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    9. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    10. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    11. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    12. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    13. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2025. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(1), pages 57-73, January.
    14. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    15. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    16. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    17. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    18. Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.
    19. Jung, Yoon Mo & Whang, Joyce Jiyoung & Yun, Sangwoon, 2020. "Sparse probabilistic K-means," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    20. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:8:p:1345-:d:1638378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.