Modeling Daily Reference Evapotranspiration from Climate Variables: Assessment of Bagging and Boosting Regression Approaches
Author
Abstract
Suggested Citation
DOI: 10.1007/s11269-022-03399-4
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Tianao Wu & Wei Zhang & Xiyun Jiao & Weihua Guo & Yousef Alhaj Hamoud, 2020. "Comparison of five Boosting-based models for estimating daily reference evapotranspiration with limited meteorological variables," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-28, June.
- Tao, Hai & Diop, Lamine & Bodian, Ansoumana & Djaman, Koffi & Ndiaye, Papa Malick & Yaseen, Zaher Mundher, 2018. "Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso," Agricultural Water Management, Elsevier, vol. 208(C), pages 140-151.
- Milan Gocić & Mohammad Arab Amiri, 2021. "Reference Evapotranspiration Prediction Using Neural Networks and Optimum Time Lags," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1913-1926, April.
- Soo-Jin Kim & Seung-Jong Bae & Min-Won Jang, 2022. "Linear Regression Machine Learning Algorithms for Estimating Reference Evapotranspiration Using Limited Climate Data," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
- Yash Agrawal & Manoranjan Kumar & Supriya Ananthakrishnan & Gopalakrishnan Kumarapuram, 2022. "Evapotranspiration Modeling Using Different Tree Based Ensembled Machine Learning Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 1025-1042, February.
- Yamaç, Sevim Seda & Todorovic, Mladen, 2020. "Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data," Agricultural Water Management, Elsevier, vol. 228(C).
- Dilip Kumar Roy & Kowshik Kumar Saha & Mohammad Kamruzzaman & Sujit Kumar Biswas & Mohammad Anower Hossain, 2021. "Hierarchical Fuzzy Systems Integrated with Particle Swarm Optimization for Daily Reference Evapotranspiration Prediction: a Novel Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5383-5407, December.
- Fan, Junliang & Ma, Xin & Wu, Lifeng & Zhang, Fucang & Yu, Xiang & Zeng, Wenzhi, 2019. "Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data," Agricultural Water Management, Elsevier, vol. 225(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Abhirup Paria & Arindam Giri & Subrata Dutta & Sarmistha Neogy, 2025. "Smart Irrigation for Coriander Plant: Saving Water with AI and IoT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(7), pages 3379-3395, May.
- Ismail Abd-Elaty & N. L. Kushwaha & Abhishek Patel, 2023. "Novel Hybrid Machine Learning Algorithms for Lakes Evaporation and Power Production using Floating Semitransparent Polymer Solar Cells," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(12), pages 4639-4661, September.
- Jitendra Rajput & Man Singh & K. Lal & Manoj Khanna & A. Sarangi & J. Mukherjee & Shrawan Singh, 2024. "Data-driven reference evapotranspiration (ET0) estimation: a comparative study of regression and machine learning techniques," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 12679-12706, May.
- Qinghe Wang & Na Liu & Shunqing Zhong & Wulin Jiang, 2024. "Application and Uncertainty Analysis of Data-Driven and Process-Based Evapotranspiration Models Across Various Ecosystems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(7), pages 2359-2376, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dilip Kumar Roy & Tapash Kumar Sarkar & Sujit Kumar Biswas & Bithin Datta, 2023. "Generalized Daily Reference Evapotranspiration Models Based on a Hybrid Optimization Algorithm Tuned Fuzzy Tree Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 193-218, January.
- Hadeel E. Khairan & Salah L. Zubaidi & Syed Fawad Raza & Maysoun Hameed & Nadhir Al-Ansari & Hussein Mohammed Ridha, 2023. "Examination of Single- and Hybrid-Based Metaheuristic Algorithms in ANN Reference Evapotranspiration Estimating," Sustainability, MDPI, vol. 15(19), pages 1-22, September.
- Fan, Junliang & Zheng, Jing & Wu, Lifeng & Zhang, Fucang, 2021. "Estimation of daily maize transpiration using support vector machines, extreme gradient boosting, artificial and deep neural networks models," Agricultural Water Management, Elsevier, vol. 245(C).
- Yamaç, Sevim Seda, 2021. "Artificial intelligence methods reliably predict crop evapotranspiration with different combinations of meteorological data for sugar beet in a semiarid area," Agricultural Water Management, Elsevier, vol. 254(C).
- Wu, Lifeng & Peng, Youwen & Fan, Junliang & Wang, Yicheng & Huang, Guomin, 2021. "A novel kernel extreme learning machine model coupled with K-means clustering and firefly algorithm for estimating monthly reference evapotranspiration in parallel computation," Agricultural Water Management, Elsevier, vol. 245(C).
- Dilip Kumar Roy & Kowshik Kumar Saha & Mohammad Kamruzzaman & Sujit Kumar Biswas & Mohammad Anower Hossain, 2021. "Hierarchical Fuzzy Systems Integrated with Particle Swarm Optimization for Daily Reference Evapotranspiration Prediction: a Novel Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5383-5407, December.
- Yan, Shicheng & Wu, Lifeng & Fan, Junliang & Zhang, Fucang & Zou, Yufeng & Wu, You, 2021. "A novel hybrid WOA-XGB model for estimating daily reference evapotranspiration using local and external meteorological data: Applications in arid and humid regions of China," Agricultural Water Management, Elsevier, vol. 244(C).
- Zehai Gao & Dongzhe Yang & Baojun Li & Zijun Gao & Chengcheng Li, 2025. "Reference Crop Evapotranspiration Prediction Based on Gated Recurrent Unit with Quantum Inspired Multi-head Self-attention Mechanism," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(3), pages 1481-1501, February.
- Huang, Guomin & Dong, Jianhua & Wu, Lifeng & Luo, Jingwei & Qiu, Rangjian & Cui, Yaokui & Wang, Yicheng, 2025. "A new regional reference evapotranspiration model based on quantile approximation of meteorological variables," Agricultural Water Management, Elsevier, vol. 308(C).
- Chia, Min Yan & Huang, Yuk Feng & Koo, Chai Hoon, 2022. "Resolving data-hungry nature of machine learning reference evapotranspiration estimating models using inter-model ensembles with various data management schemes," Agricultural Water Management, Elsevier, vol. 261(C).
- Long Zhao & Liwen Xing & Yuhang Wang & Ningbo Cui & Hanmi Zhou & Yi Shi & Sudan Chen & Xinbo Zhao & Zhe Li, 2023. "Prediction Model for Reference Crop Evapotranspiration Based on the Back-propagation Algorithm with Limited Factors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1207-1222, February.
- Jitendra Rajput & Man Singh & K. Lal & Manoj Khanna & A. Sarangi & J. Mukherjee & Shrawan Singh, 2024. "Data-driven reference evapotranspiration (ET0) estimation: a comparative study of regression and machine learning techniques," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 12679-12706, May.
- Yamashiro, Hirochika & Nonaka, Hirofumi, 2021. "Estimation of processing time using machine learning and real factory data for optimization of parallel machine scheduling problem," Operations Research Perspectives, Elsevier, vol. 8(C).
- Tuba Tanyıldızı Ağır, 2024. "Prediction of Losses Due to Dust in PV Using Hybrid LSTM-KNN Algorithm: The Case of Saruhanlı," Sustainability, MDPI, vol. 16(9), pages 1-20, April.
- Inga Dailidienė & Inesa Servaitė & Remigijus Dailidė & Erika Vasiliauskienė & Lolita Rapolienė & Ramūnas Povilanskas & Donatas Valiukas, 2023. "Increasing Trends of Heat Waves and Tropical Nights in Coastal Regions (The Case Study of Lithuania Seaside Cities)," Sustainability, MDPI, vol. 15(19), pages 1-21, September.
- Wang, Yujin & Zhang, Zhitao & Chen, Yinwen & Fan, Shaoshuai & Chen, Haiying & Bai, Xuqian & Yang, Ning & Tang, Zijun & Qian, Long & Mao, Zhengxuan & Zhang, Siying & Chen, Junying & Xiang, Youzhen, 2025. "Correction of crop water deficit indicators based on time-lag effects for improved farmland water status assessment," Agricultural Water Management, Elsevier, vol. 313(C).
- Ook Lee & Hanseon Joo & Hayoung Choi & Minjong Cheon, 2022. "Proposing an Integrated Approach to Analyzing ESG Data via Machine Learning and Deep Learning Algorithms," Sustainability, MDPI, vol. 14(14), pages 1-14, July.
- Mohammed Magdy Hamed & Najeebullah Khan & Mohd Khairul Idlan Muhammad & Shamsuddin Shahid, 2022. "Ranking of Empirical Evapotranspiration Models in Different Climate Zones of Pakistan," Land, MDPI, vol. 11(12), pages 1-18, November.
- Patricio Vladimir Méndez-Zambrano & Luis Patricio Tierra Pérez & Rogelio Estalin Ureta Valdez & Ángel Patricio Flores Orozco, 2023. "Technological Innovations for Agricultural Production from an Environmental Perspective: A Review," Sustainability, MDPI, vol. 15(22), pages 1-15, November.
- Esangbedo, Moses Olabhele & Taiwo, Blessing Olamide & Abbas, Hawraa H. & Hosseini, Shahab & Sazid, Mohammed & Fissha, Yewuhalashet, 2024. "Enhancing the exploitation of natural resources for green energy: An application of LSTM-based meta-model for aluminum prices forecasting," Resources Policy, Elsevier, vol. 92(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:3:d:10.1007_s11269-022-03399-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.