IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v39y2025i3d10.1007_s11269-024-04016-2.html
   My bibliography  Save this article

Reference Crop Evapotranspiration Prediction Based on Gated Recurrent Unit with Quantum Inspired Multi-head Self-attention Mechanism

Author

Listed:
  • Zehai Gao

    (Xi’an University of Technology
    Air Force Engineering University)

  • Dongzhe Yang

    (Xi’an University of Technology)

  • Baojun Li

    (Air Force Engineering University)

  • Zijun Gao

    (Xi’an University of Technology)

  • Chengcheng Li

    (Xi’an University of Technology)

Abstract

Reference crop evapotranspiration (ET0), as a critical element in climatology, hydrology and agricultural science, is essential for water hydrological cycle and irrigation scheduling. The FAO-56 Penman Monteith Equation (FAO-56 PM) is a standard method with complex formulation and strict meteorological factors for ET0 calculation. To overcome the strict meteorological factor restriction, this paper proposes an ET0 prediction model GRU-QIMSA, which is constructed based on gated recurrent unit (GRU) and quantum inspired multi-head self-attention mechanism (SA). The daily meteorological data from six weather stations in Yulin City from 1990 to 2019 are collected to calibrate the proposed model. By using cosine similarity and cross entropy, the saturation vapor pressure, actual water vapor pressure and solar radiation are selected as supplementary meteorological data to boost the prediction performance of the proposed model. The effectiveness and superiority of the proposed model are validated in comparison with GRU-SA, GRU and back propagation neural network (BPNN). The order of the prediction accuracy is GRU-QIMSA > GRU-SA > GRU > BPNN. The proposed model outperforms GRU-SA, GRU and BP neural network, which indicates that the quantum inspired multi-head self-attention mechanism can learn the time series data effectively. The prediction results of the proposed GRU-QIMSA show excellent performance on all the weather station datasets, which implies that the quantum inspired multi-head self-attention mechanism can obtain better generalization ability than other methods. In terms of 7 steps ahead prediction, the ET0 prediction error is in the range of -1.5 to 1.5 (mm/day), which indicates that the proposed GRU-QIMSA model can obtain the high prediction accuracy and excellent generalization ability.

Suggested Citation

  • Zehai Gao & Dongzhe Yang & Baojun Li & Zijun Gao & Chengcheng Li, 2025. "Reference Crop Evapotranspiration Prediction Based on Gated Recurrent Unit with Quantum Inspired Multi-head Self-attention Mechanism," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(3), pages 1481-1501, February.
  • Handle: RePEc:spr:waterr:v:39:y:2025:i:3:d:10.1007_s11269-024-04016-2
    DOI: 10.1007/s11269-024-04016-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-024-04016-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-024-04016-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Sheng & Lian, Jinjiao & Peng, Yuzhong & Hu, Baoqing & Chen, Hongsong, 2019. "Generalized reference evapotranspiration models with limited climatic data based on random forest and gene expression programming in Guangxi, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 220-230.
    2. Dilip Kumar Roy & Kowshik Kumar Saha & Mohammad Kamruzzaman & Sujit Kumar Biswas & Mohammad Anower Hossain, 2021. "Hierarchical Fuzzy Systems Integrated with Particle Swarm Optimization for Daily Reference Evapotranspiration Prediction: a Novel Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5383-5407, December.
    3. Kang, Yan & Chen, Peiru & Cheng, Xiao & Zhang, Shuo & Song, Songbai, 2022. "Novel hybrid machine learning framework with decomposition–transformation and identification of key modes for estimating reference evapotranspiration," Agricultural Water Management, Elsevier, vol. 273(C).
    4. Yin, Juan & Deng, Zhen & Ines, Amor V.M. & Wu, Junbin & Rasu, Eeswaran, 2020. "Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM)," Agricultural Water Management, Elsevier, vol. 242(C).
    5. Shima Amani & Hossein Shafizadeh-Moghadam & Saeid Morid, 2024. "Utilizing Machine Learning Models with Limited Meteorological Data as Alternatives for the FAO-56PM Model in Estimating Reference Evapotranspiration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(6), pages 1921-1942, April.
    6. Junzeng Xu & Junmei Wang & Qi Wei & Yanhua Wang, 2016. "Symbolic Regression Equations for Calculating Daily Reference Evapotranspiration with the Same Input to Hargreaves-Samani in Arid China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 2055-2073, April.
    7. Zehai Gao & Yang Liu & Nan Li & Kangjie Ma, 2022. "An Enhanced Beetle Antennae Search Algorithm Based Comprehensive Water Quality Index for Urban River Water Quality Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2685-2702, June.
    8. Tayeb Raziei & Morteza Miri, 2023. "An Alternative Approach for Computing the Standardized Precipitation-Evapotranspiration Index (SPEI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 4123-4141, August.
    9. Aris Psilovikos & Mohamed Elhag, 2013. "Forecasting of Remotely Sensed Daily Evapotranspiration Data Over Nile Delta Region, Egypt," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4115-4130, September.
    10. Baik, Jongjin & Choi, Minha, 2015. "Evaluation of geostationary satellite (COMS) based Priestley–Taylor evapotranspiration," Agricultural Water Management, Elsevier, vol. 159(C), pages 77-91.
    11. Milan Gocić & Mohammad Arab Amiri, 2021. "Reference Evapotranspiration Prediction Using Neural Networks and Optimum Time Lags," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1913-1926, April.
    12. Pei Wang & Jingjing Ma & Juanjuan Ma & Haitao Sun & Qi Chen, 2021. "A Novel Approach for the Simulation of Reference Evapotranspiration and Its Partitioning," Agriculture, MDPI, vol. 11(5), pages 1-12, April.
    13. Su, Qiong & Singh, Vijay P. & Karthikeyan, Raghupathy, 2022. "Improved reference evapotranspiration methods for regional irrigation water demand estimation," Agricultural Water Management, Elsevier, vol. 274(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dilip Kumar Roy & Tapash Kumar Sarkar & Sujit Kumar Biswas & Bithin Datta, 2023. "Generalized Daily Reference Evapotranspiration Models Based on a Hybrid Optimization Algorithm Tuned Fuzzy Tree Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 193-218, January.
    2. Jayashree T R & NV Subba Reddy & U Dinesh Acharya, 2023. "Modeling Daily Reference Evapotranspiration from Climate Variables: Assessment of Bagging and Boosting Regression Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1013-1032, February.
    3. Kim, Ho-Jun & Chandrasekara, Sewwandhi & Kwon, Hyun-Han & Lima, Carlos & Kim, Tae-woong, 2023. "A novel multi-scale parameter estimation approach to the Hargreaves-Samani equation for estimation of Penman-Monteith reference evapotranspiration," Agricultural Water Management, Elsevier, vol. 275(C).
    4. Dong, Juan & Xing, Liwen & Cui, Ningbo & Zhao, Lu & Guo, Li & Wang, Zhihui & Du, Taisheng & Tan, Mingdong & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using improved convolutional bidirectional long short-term memory network by multi-head attention mechanism in the four climatic zones of China," Agricultural Water Management, Elsevier, vol. 292(C).
    5. Dilip Kumar Roy & Kowshik Kumar Saha & Mohammad Kamruzzaman & Sujit Kumar Biswas & Mohammad Anower Hossain, 2021. "Hierarchical Fuzzy Systems Integrated with Particle Swarm Optimization for Daily Reference Evapotranspiration Prediction: a Novel Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5383-5407, December.
    6. Hadeel E. Khairan & Salah L. Zubaidi & Syed Fawad Raza & Maysoun Hameed & Nadhir Al-Ansari & Hussein Mohammed Ridha, 2023. "Examination of Single- and Hybrid-Based Metaheuristic Algorithms in ANN Reference Evapotranspiration Estimating," Sustainability, MDPI, vol. 15(19), pages 1-22, September.
    7. Lee, Yonggwan & Jung, Chunggil & Kim, Seongjoon, 2019. "Spatial distribution of soil moisture estimates using a multiple linear regression model and Korean geostationary satellite (COMS) data," Agricultural Water Management, Elsevier, vol. 213(C), pages 580-593.
    8. Mojtaba Kadkhodazadeh & Mahdi Valikhan Anaraki & Amirreza Morshed-Bozorgdel & Saeed Farzin, 2022. "A New Methodology for Reference Evapotranspiration Prediction and Uncertainty Analysis under Climate Change Conditions Based on Machine Learning, Multi Criteria Decision Making and Monte Carlo Methods," Sustainability, MDPI, vol. 14(5), pages 1-37, February.
    9. Meenu R Mridula & Ashalatha S Nair & K Satheesh Kumar, 2018. "Genetic programming based models in plant tissue culture: An addendum to traditional statistical approach," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-13, February.
    10. Hadeel E. Khairan & Salah L. Zubaidi & Mustafa Al-Mukhtar & Anmar Dulaimi & Hussein Al-Bugharbee & Furat A. Al-Faraj & Hussein Mohammed Ridha, 2023. "Assessing the Potential of Hybrid-Based Metaheuristic Algorithms Integrated with ANNs for Accurate Reference Evapotranspiration Forecasting," Sustainability, MDPI, vol. 15(19), pages 1-19, September.
    11. Elbeltagi, Ahmed & Deng, Jinsong & Wang, Ke & Malik, Anurag & Maroufpoor, Saman, 2020. "Modeling long-term dynamics of crop evapotranspiration using deep learning in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 241(C).
    12. Mohammad Taghi Sattari & Halit Apaydin & Shahaboddin Shamshirband, 2020. "Performance Evaluation of Deep Learning-Based Gated Recurrent Units (GRUs) and Tree-Based Models for Estimating ETo by Using Limited Meteorological Variables," Mathematics, MDPI, vol. 8(6), pages 1-18, June.
    13. Matin Ahooghalandari & Mehdi Khiadani & Mina Esmi Jahromi, 2016. "Developing Equations for Estimating Reference Evapotranspiration in Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3815-3828, September.
    14. Jitendra Rajput & Man Singh & Khajanchi Lal & Manoj Khanna & Arjamadutta Sarangi & Joydeep Mukherjee & Shrawan Singh, 2024. "Selection of alternate reference evapotranspiration models based on multi-criteria decision ranking for semiarid climate," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 11171-11216, May.
    15. Mahsa Shahbandeh & Mohamed Elhag, 2024. "Microclimate changes and trend analysis of remotely sensed environmental parameters in West Asia Semi-arid region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(6), pages 14433-14447, June.
    16. Shih-Lun Fang & Yi-Shan Lin & Sheng-Chih Chang & Yi-Lung Chang & Bing-Yun Tsai & Bo-Jein Kuo, 2024. "Using Artificial Intelligence Algorithms to Estimate and Short-Term Forecast the Daily Reference Evapotranspiration with Limited Meteorological Variables," Agriculture, MDPI, vol. 14(4), pages 1-20, March.
    17. Senzheng Chen & Huichun Ye & Chaojia Nie & Hongye Wang & Jingjing Wang, 2023. "Research on the Assessment Method of Sugarcane Cultivation Suitability in Guangxi Province, China, Based on Multi-Source Data," Agriculture, MDPI, vol. 13(5), pages 1-17, April.
    18. Mehdi Jamei & Mumtaz Ali & Anurag Malik & Ramendra Prasad & Shahab Abdulla & Zaher Mundher Yaseen, 2022. "Forecasting Daily Flood Water Level Using Hybrid Advanced Machine Learning Based Time-Varying Filtered Empirical Mode Decomposition Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4637-4676, September.
    19. Zhang, Lei & Zhao, Xin & Zhu, Ge & He, Jun & Chen, Jian & Chen, Zhicheng & Traore, Seydou & Liu, Junguo & Singh, Vijay P., 2023. "Short-term daily reference evapotranspiration forecasting using temperature-based deep learning models in different climate zones in China," Agricultural Water Management, Elsevier, vol. 289(C).
    20. Qiong Su & Raghupathy Karthikeyan, 2023. "Regional Water Stress Forecasting: Effects of Climate Change, Socioeconomic Development, and Irrigated Agriculture—A Texas Case Study," Sustainability, MDPI, vol. 15(12), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:39:y:2025:i:3:d:10.1007_s11269-024-04016-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.