IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i6d10.1007_s11269-023-03670-2.html
   My bibliography  Save this article

Utilizing Machine Learning Models with Limited Meteorological Data as Alternatives for the FAO-56PM Model in Estimating Reference Evapotranspiration

Author

Listed:
  • Shima Amani

    (Tarbiat Modares University)

  • Hossein Shafizadeh-Moghadam

    (Tarbiat Modares University)

  • Saeid Morid

    (Tarbiat Modares University)

Abstract

The current study evaluated the accuracy of four machine learning (ML) models and thirteen experimental methods calibrated to estimate reference evapotranspiration (ET0) in arid and semi-arid regions. Various scenarios were examined utilizing meteorological data and FAO56-PM as a benchmark. According to the results, the ML models outperformed the experimental methods on both daily and monthly scales. Among the ML models, artificial neural networks (ANNs), generalized additive model (GAM), random forest (RF), and support vector machine (SVM), respectively, demonstrated higher accuracy on a monthly scale, while ANNs, SVM, RF, and GAM exhibited greater accuracy on a daily scale. Notably, ANNs and SVM achieved high accuracy even with a limited number of variables. Conversely, RF showed improved accuracy with an increased number of variables. Comparing the ML and experimental models with equivalent inputs revealed that ANN with inputs similar to Valiantzas-1 performed better on a monthly scale, while SVM with inputs akin to Valiantzas-3 showed superior performance on a daily scale. Our findings suggest that average temperature, wind speed, and sunshine hours contribute significantly to the accuracy of ML models. Consequently, these ML models can serve as an alternative to the FAO56-PM method for estimating ET0.

Suggested Citation

  • Shima Amani & Hossein Shafizadeh-Moghadam & Saeid Morid, 2024. "Utilizing Machine Learning Models with Limited Meteorological Data as Alternatives for the FAO-56PM Model in Estimating Reference Evapotranspiration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(6), pages 1921-1942, April.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:6:d:10.1007_s11269-023-03670-2
    DOI: 10.1007/s11269-023-03670-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03670-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03670-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Sheng & Lian, Jinjiao & Peng, Yuzhong & Hu, Baoqing & Chen, Hongsong, 2019. "Generalized reference evapotranspiration models with limited climatic data based on random forest and gene expression programming in Guangxi, China," Agricultural Water Management, Elsevier, vol. 221(C), pages 220-230.
    2. Holmes, J. W., 1984. "Measuring evapotranspiration by hydrological methods," Agricultural Water Management, Elsevier, vol. 8(1-3), pages 29-40, January.
    3. Lu, Yingjie & Li, Tao & Hu, Hui & Zeng, Xuemei, 2023. "Short-term prediction of reference crop evapotranspiration based on machine learning with different decomposition methods in arid areas of China," Agricultural Water Management, Elsevier, vol. 279(C).
    4. Liu, Xiaoying & Xu, Chunying & Zhong, Xiuli & Li, Yuzhong & Yuan, Xiaohuan & Cao, Jingfeng, 2017. "Comparison of 16 models for reference crop evapotranspiration against weighing lysimeter measurement," Agricultural Water Management, Elsevier, vol. 184(C), pages 145-155.
    5. Amani, Shima & Shafizadeh-Moghadam, Hossein, 2023. "A review of machine learning models and influential factors for estimating evapotranspiration using remote sensing and ground-based data," Agricultural Water Management, Elsevier, vol. 284(C).
    6. Xiaohu Wen & Jianhua Si & Zhibin He & Jun Wu & Hongbo Shao & Haijiao Yu, 2015. "Support-Vector-Machine-Based Models for Modeling Daily Reference Evapotranspiration With Limited Climatic Data in Extreme Arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3195-3209, July.
    7. Erdem Küçüktopcu & Emirhan Cemek & Bilal Cemek & Halis Simsek, 2023. "Hybrid Statistical and Machine Learning Methods for Daily Evapotranspiration Modeling," Sustainability, MDPI, vol. 15(7), pages 1-15, March.
    8. Dilip Kumar Roy & Tapash Kumar Sarkar & Sujit Kumar Biswas & Bithin Datta, 2023. "Generalized Daily Reference Evapotranspiration Models Based on a Hybrid Optimization Algorithm Tuned Fuzzy Tree Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 193-218, January.
    9. Blaney, Harry F. & Criddle, Wayne D., 1962. "Determining Consumptive Use and Irrigation Water Requirements," Technical Bulletins 171000, United States Department of Agriculture, Economic Research Service.
    10. Fan, Junliang & Ma, Xin & Wu, Lifeng & Zhang, Fucang & Yu, Xiang & Zeng, Wenzhi, 2019. "Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data," Agricultural Water Management, Elsevier, vol. 225(C).
    11. Liu Yunfei & Gui Dongwei & Yin Changjun & Zhang Lei & Xue Dongping & Liu Yi & Zeng Fanjiang & Zeeshan Ahmed & Chen Xiaoping, 2023. "Estimating the Temporal and Spatial Variations in Evapotranspiration with a Nonlinear Evaporation Complementary Relationship Model in Hyper-arid Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 521-535, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zehai Gao & Dongzhe Yang & Baojun Li & Zijun Gao & Chengcheng Li, 2025. "Reference Crop Evapotranspiration Prediction Based on Gated Recurrent Unit with Quantum Inspired Multi-head Self-attention Mechanism," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 39(3), pages 1481-1501, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Shicheng & Wu, Lifeng & Fan, Junliang & Zhang, Fucang & Zou, Yufeng & Wu, You, 2021. "A novel hybrid WOA-XGB model for estimating daily reference evapotranspiration using local and external meteorological data: Applications in arid and humid regions of China," Agricultural Water Management, Elsevier, vol. 244(C).
    2. Peter Addo Amarkai & Sinan Süheri, 2024. "Comparative Evaluation of Crop Evapotranspiration Estimation Methods in a Semi-Arid Region," Sustainability, MDPI, vol. 16(24), pages 1-20, December.
    3. Dong, Juan & Xing, Liwen & Cui, Ningbo & Zhao, Lu & Guo, Li & Wang, Zhihui & Du, Taisheng & Tan, Mingdong & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using improved convolutional bidirectional long short-term memory network by multi-head attention mechanism in the four climatic zones of China," Agricultural Water Management, Elsevier, vol. 292(C).
    4. Ahmadi, Farshad & Mehdizadeh, Saeid & Mohammadi, Babak & Pham, Quoc Bao & DOAN, Thi Ngoc Canh & Vo, Ngoc Duong, 2021. "Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation," Agricultural Water Management, Elsevier, vol. 244(C).
    5. Stephen Luo Sheng Yong & Jing Lin Ng & Yuk Feng Huang & Chun Kit Ang & Norashikin Ahmad Kamal & Majid Mirzaei & Ali Najah Ahmed, 2024. "Enhanced Daily Reference Evapotranspiration Estimation Using Optimized Hybrid Support Vector Regression Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4213-4241, September.
    6. Wu, Lifeng & Peng, Youwen & Fan, Junliang & Wang, Yicheng & Huang, Guomin, 2021. "A novel kernel extreme learning machine model coupled with K-means clustering and firefly algorithm for estimating monthly reference evapotranspiration in parallel computation," Agricultural Water Management, Elsevier, vol. 245(C).
    7. Malik, Anurag & Jamei, Mehdi & Ali, Mumtaz & Prasad, Ramendra & Karbasi, Masoud & Yaseen, Zaher Mundher, 2022. "Multi-step daily forecasting of reference evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge regression feature selection," Agricultural Water Management, Elsevier, vol. 272(C).
    8. Yang, Yang & Luo, Yufeng & Wu, Conglin & Zheng, Hezhen & Zhang, Lei & Cui, Yuanlai & Sun, Ningning & Wang, Li, 2019. "Evaluation of six equations for daily reference evapotranspiration estimating using public weather forecast message for different climate regions across China," Agricultural Water Management, Elsevier, vol. 222(C), pages 386-399.
    9. Huang, Guomin & Dong, Jianhua & Wu, Lifeng & Luo, Jingwei & Qiu, Rangjian & Cui, Yaokui & Wang, Yicheng, 2025. "A new regional reference evapotranspiration model based on quantile approximation of meteorological variables," Agricultural Water Management, Elsevier, vol. 308(C).
    10. Su, Qiong & Singh, Vijay P. & Karthikeyan, Raghupathy, 2022. "Improved reference evapotranspiration methods for regional irrigation water demand estimation," Agricultural Water Management, Elsevier, vol. 274(C).
    11. Dong, Juan & Xing, Liwen & Cui, Ningbo & Guo, Li & Liang, Chuan & Zhao, Lu & Wang, Zhihui & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using optimized empirical methods with a novel improved Grey Wolf Algorithm in four climatic regions of China," Agricultural Water Management, Elsevier, vol. 291(C).
    12. Ferreira, Lucas Borges & da Cunha, Fernando França, 2020. "New approach to estimate daily reference evapotranspiration based on hourly temperature and relative humidity using machine learning and deep learning," Agricultural Water Management, Elsevier, vol. 234(C).
    13. Yamashiro, Hirochika & Nonaka, Hirofumi, 2021. "Estimation of processing time using machine learning and real factory data for optimization of parallel machine scheduling problem," Operations Research Perspectives, Elsevier, vol. 8(C).
    14. Ook Lee & Hanseon Joo & Hayoung Choi & Minjong Cheon, 2022. "Proposing an Integrated Approach to Analyzing ESG Data via Machine Learning and Deep Learning Algorithms," Sustainability, MDPI, vol. 14(14), pages 1-14, July.
    15. Panagiotis Christias & Ioannis N. Daliakopoulos & Thrassyvoulos Manios & Mariana Mocanu, 2020. "Comparison of Three Computational Approaches for Tree Crop Irrigation Decision Support," Mathematics, MDPI, vol. 8(5), pages 1-26, May.
    16. A. S. Giannikopoulou & F. K. Gad & E. Kampragou & D. Assimacopoulos, 2017. "Risk-Based Assessment of Drought Mitigation Options: the Case of Syros Island, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(2), pages 655-669, January.
    17. Abhinaya Subedi & José Chávez, 2015. "Crop Evapotranspiration (ET) Estimation Models: A Review and Discussion of the Applicability and Limitations of ET Methods," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 7(6), pages 1-50, May.
    18. Zhang, Yixiao & He, Tao & Liang, Shunlin & Zhao, Zhongguo, 2023. "A framework for estimating actual evapotranspiration through spatial heterogeneity-based machine learning approaches," Agricultural Water Management, Elsevier, vol. 289(C).
    19. Seydou Traore & Yufeng Luo & Guy Fipps, 2017. "Gene-Expression Programming for Short-Term Forecasting of Daily Reference Evapotranspiration Using Public Weather Forecast Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4891-4908, December.
    20. Zhaoshuang He & Yanhua Chen & Yale Zang, 2024. "Wind Speed Forecasting Based on Phase Space Reconstruction and a Novel Optimization Algorithm," Sustainability, MDPI, vol. 16(16), pages 1-29, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:6:d:10.1007_s11269-023-03670-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.