IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005357.html
   My bibliography  Save this article

Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies

Author

Listed:
  • Cox Lwaka Tamba
  • Yuan-Li Ni
  • Yuan-Ming Zhang

Abstract

Genome-wide association study (GWAS) entails examining a large number of single nucleotide polymorphisms (SNPs) in a limited sample with hundreds of individuals, implying a variable selection problem in the high dimensional dataset. Although many single-locus GWAS approaches under polygenic background and population structure controls have been widely used, some significant loci fail to be detected. In this study, we used an iterative modified-sure independence screening (ISIS) approach in reducing the number of SNPs to a moderate size. Expectation-Maximization (EM)-Bayesian least absolute shrinkage and selection operator (BLASSO) was used to estimate all the selected SNP effects for true quantitative trait nucleotide (QTN) detection. This method is referred to as ISIS EM-BLASSO algorithm. Monte Carlo simulation studies validated the new method, which has the highest empirical power in QTN detection and the highest accuracy in QTN effect estimation, and it is the fastest, as compared with efficient mixed-model association (EMMA), smoothly clipped absolute deviation (SCAD), fixed and random model circulating probability unification (FarmCPU), and multi-locus random-SNP-effect mixed linear model (mrMLM). To further demonstrate the new method, six flowering time traits in Arabidopsis thaliana were re-analyzed by four methods (New method, EMMA, FarmCPU, and mrMLM). As a result, the new method identified most previously reported genes. Therefore, the new method is a good alternative for multi-locus GWAS.Author summary: Genome-wide association study is concerned with the associations between markers and traits of interest so as to identify all the significantly associated markers. In genome-wide association studies, hundreds of thousands of markers are genotyped for several hundreds of individuals. Usually, only a very minor subset of these markers is associated with the trait. Most penalization methods fail when the number of markers is much larger than the sample size. Based on this fact, we have developed an algorithm that proceeds in two stages. In the first stage (screening), we reduced the number of markers via correlation learning to a moderate size. We then used a moderate-scale variable selection method to select variables in the reduced model. Conditional on the selected variables, we repeated the screening procedure and chose another set of variables. In the second stage (estimation), all the above-selected variables are accurately estimated in a multi-locus model. Our approach is simple, accurate in estimation, fast and shows high statistical power of detecting relevant markers on simulated data. We have also used this method to identify relevant genes in real data analysis. We recommend our approach for conducting a multi-locus genome-wide association study.

Suggested Citation

  • Cox Lwaka Tamba & Yuan-Li Ni & Yuan-Ming Zhang, 2017. "Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-20, January.
  • Handle: RePEc:plo:pcbi00:1005357
    DOI: 10.1371/journal.pcbi.1005357
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005357
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005357&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005357?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Gerhard Moser & Sang Hong Lee & Ben J Hayes & Michael E Goddard & Naomi R Wray & Peter M Visscher, 2015. "Simultaneous Discovery, Estimation and Prediction Analysis of Complex Traits Using a Bayesian Mixture Model," PLOS Genetics, Public Library of Science, vol. 11(4), pages 1-22, April.
    3. Hai-Yan Lü & Xiao-Fen Liu & Shi-Ping Wei & Yuan-Ming Zhang, 2011. "Epistatic Association Mapping in Homozygous Crop Cultivars," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-10, March.
    4. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    5. Xiaolei Liu & Meng Huang & Bin Fan & Edward S Buckler & Zhiwu Zhang, 2016. "Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies," PLOS Genetics, Public Library of Science, vol. 12(2), pages 1-24, February.
    6. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    7. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    8. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    9. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    2. Ruggieri, Eric & Lawrence, Charles E., 2012. "On efficient calculations for Bayesian variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1319-1332.
    3. Wei Sun & Lexin Li, 2012. "Multiple Loci Mapping via Model-free Variable Selection," Biometrics, The International Biometric Society, vol. 68(1), pages 12-22, March.
    4. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    5. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    6. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    7. Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022. "On LASSO for predictive regression," Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
    8. Jingxuan Luo & Lili Yue & Gaorong Li, 2023. "Overview of High-Dimensional Measurement Error Regression Models," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    9. Tan, Xin Lu, 2019. "Optimal estimation of slope vector in high-dimensional linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 179-204.
    10. Huicong Yu & Jiaqi Wu & Weiping Zhang, 2024. "Simultaneous subgroup identification and variable selection for high dimensional data," Computational Statistics, Springer, vol. 39(6), pages 3181-3205, September.
    11. Yu-Zhu Tian & Man-Lai Tang & Wai-Sum Chan & Mao-Zai Tian, 2021. "Bayesian bridge-randomized penalized quantile regression for ordinal longitudinal data, with application to firm’s bond ratings," Computational Statistics, Springer, vol. 36(2), pages 1289-1319, June.
    12. Chen, Shi & Härdle, Wolfgang Karl & López Cabrera, Brenda, 2018. "Regularization Approach for Network Modeling of German Energy Market," IRTG 1792 Discussion Papers 2018-017, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    13. Zakariya Yahya Algamal & Muhammad Hisyam Lee, 2019. "A two-stage sparse logistic regression for optimal gene selection in high-dimensional microarray data classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 753-771, September.
    14. Fan, Jianqing & Liao, Yuan, 2012. "Endogeneity in ultrahigh dimension," MPRA Paper 38698, University Library of Munich, Germany.
    15. Min Chen & Yimin Lian & Zhao Chen & Zhengjun Zhang, 2017. "Sure explained variability and independence screening," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 849-883, October.
    16. Philip Kostov & Thankom Arun & Samuel Annim, 2014. "Financial Services to the Unbanked: the case of the Mzansi intervention in South Africa," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 8(2), June.
    17. Dai, Linlin & Chen, Kani & Sun, Zhihua & Liu, Zhenqiu & Li, Gang, 2018. "Broken adaptive ridge regression and its asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 334-351.
    18. Mogliani, Matteo & Simoni, Anna, 2021. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
    19. Aneiros, Germán & Novo, Silvia & Vieu, Philippe, 2022. "Variable selection in functional regression models: A review," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    20. Li, Xingxiang & Cheng, Guosheng & Wang, Liming & Lai, Peng & Song, Fengli, 2017. "Ultrahigh dimensional feature screening via projection," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 88-104.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.