IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04885268.html
   My bibliography  Save this paper

Machine learning forecasting in the macroeconomic environment: the case of the US output gap

Author

Listed:
  • Emmanouil Sofianos

    (UNISTRA - Université de Strasbourg)

  • Christos Alexakis

    (ESC [Rennes] - ESC Rennes School of Business)

  • Periklis Gogas

    (DUTH - Democritus University of Thrace)

  • Theophilos Papadimitriou

    (DUTH - Democritus University of Thrace)

Abstract

This paper aims to forecast deviations of the US output measured by the industrial production index (IPI), from its long-run potential output, known as output gaps. These gaps are important for policymakers when designing relevant economic policies, especially when a negative output gap may show economic slack or underperformance, often associated with higher unemployment and low infation. We use a dataset that includes 32 explanatory economic and fnancial variables and 18 lags of the IPI, spanning the period from 2000:1 to 2022:12, resulting in 50 variables and 276 monthly observations. The dataset is fed to fve well-established machine learning (ML) methods, namely decision trees, random forests, XGBoost, long short-term memory (LSTM) and support vector machines (SVMs), coupled with the linear, the RBF and the polynomial kernel. Moreover, we use the standard elastic net logit method from the area of econometrics as a benchmark. Our results indicate that the tree-based ML techniques perform better in-sample, and the best overall forecasting model is the XGBoost achieving an out-of-sample accuracy of 91.67%.

Suggested Citation

  • Emmanouil Sofianos & Christos Alexakis & Periklis Gogas & Theophilos Papadimitriou, 2025. "Machine learning forecasting in the macroeconomic environment: the case of the US output gap," Post-Print hal-04885268, HAL.
  • Handle: RePEc:hal:journl:hal-04885268
    DOI: 10.1007/s10644-024-09849-w
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Athanasios Orphanides & Simon van Norden, 2002. "The Unreliability of Output-Gap Estimates in Real Time," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 569-583, November.
    2. James Morley & Benjamin Wong, 2020. "Estimating and accounting for the output gap with large Bayesian vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 1-18, January.
    3. Dimitrios Mouchtaris & Emmanouil Sofianos & Periklis Gogas & Theophilos Papadimitriou, 2021. "Forecasting Natural Gas Spot Prices with Machine Learning," Energies, MDPI, vol. 14(18), pages 1-13, September.
    4. Dupasquier, Chantal & Guay, Alain & St-Amant, Pierre, 1999. "A Survey of Alternative Methodologies for Estimating Potential Output and the Output Gap," Journal of Macroeconomics, Elsevier, vol. 21(3), pages 577-595, July.
    5. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    6. Jašová, Martina & Moessner, Richhild & Takáts, Előd, 2020. "Domestic and global output gaps as inflation drivers: What does the Phillips curve tell?," Economic Modelling, Elsevier, vol. 87(C), pages 238-253.
    7. John Y. Campbell & Carolin Pflueger & Luis M. Viceira, 2020. "Macroeconomic Drivers of Bond and Equity Risks," Journal of Political Economy, University of Chicago Press, vol. 128(8), pages 3148-3185.
    8. Berger, Tino & Morley, James & Wong, Benjamin, 2023. "Nowcasting the output gap," Journal of Econometrics, Elsevier, vol. 232(1), pages 18-34.
      • Tino Berger & James Morley & Benjamin Wong, 2020. "Nowcasting the output gap," CAMA Working Papers 2020-78, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    9. Athanasios Orphanides, 2001. "Monetary Policy Rules Based on Real-Time Data," American Economic Review, American Economic Association, vol. 91(4), pages 964-985, September.
    10. Mark Aguiar & Gita Gopinath, 2007. "Emerging Market Business Cycles: The Cycle Is the Trend," Journal of Political Economy, University of Chicago Press, vol. 115(1), pages 69-102.
    11. Dubbert, Tore & Kempa, Bernd, 2024. "Nowcasting the output gap with shadow rates," Economics Letters, Elsevier, vol. 236(C).
    12. Matteo Barigozzi & Matteo Luciani, 2023. "Measuring the Output Gap using Large Datasets," The Review of Economics and Statistics, MIT Press, vol. 105(6), pages 1500-1514, November.
    13. A. W. Phillips, 1958. "The Relation Between Unemployment and the Rate of Change of Money Wage Rates in the United Kingdom, 1861–1957," Economica, London School of Economics and Political Science, vol. 25(100), pages 283-299, November.
    14. Granados, Camilo & Parra-Amado, Daniel, 2024. "Estimating the output gap after COVID: How to address unprecedented macroeconomic variations," Economic Modelling, Elsevier, vol. 135(C).
    15. Cayen, Jean-Philippe & van Norden, Simon, 2005. "The reliability of Canadian output-gap estimates," The North American Journal of Economics and Finance, Elsevier, vol. 16(3), pages 373-393, December.
    16. Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023. "Real-time inflation forecasting using non-linear dimension reduction techniques," International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
    17. Camba-Mendez, Gonzalo & Rodriguez-Palenzuela, Diego, 2003. "Assessment criteria for output gap estimates," Economic Modelling, Elsevier, vol. 20(3), pages 529-562, May.
    18. Periklis Gogas & Theophilos Papadimitriou & Maria Matthaiou & Efthymia Chrysanthidou, 2015. "Yield Curve and Recession Forecasting in a Machine Learning Framework," Computational Economics, Springer;Society for Computational Economics, vol. 45(4), pages 635-645, April.
    19. Gogas, Periklis & Papadimitriou, Theophilos & Sofianos, Emmanouil, 2019. "Money Neutrality, Monetary Aggregates and Machine Learning," DUTH Research Papers in Economics 4-2016, Democritus University of Thrace, Department of Economics.
    20. Josefine Quast & Maik H. Wolters, 2022. "Reliable Real-Time Output Gap Estimates Based on a Modified Hamilton Filter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 152-168, January.
    21. Periklis Gogas & Theophilos Papadimitriou & Efthymia Chrysanthidou, 2015. "Yield Curve Point Triplets in Recession Forecasting," International Finance, Wiley Blackwell, vol. 18(2), pages 207-226, June.
    22. Bernhardsen, Tom & Eitrheim, Oyvind & Jore, Anne Sofie & Roisland, Oistein, 2005. "Real-time data for Norway: Challenges for monetary policy," The North American Journal of Economics and Finance, Elsevier, vol. 16(3), pages 333-349, December.
    23. Berger, Tino & Kempa, Bernd, 2011. "Bayesian estimation of the output gap for a small open economy: The case of Canada," Economics Letters, Elsevier, vol. 112(1), pages 107-112, July.
    24. Emmanouil Sofianos & Emmanouil Zaganidis & Theophilos Papadimitriou & Periklis Gogas, 2024. "Forecasting East and West Coast Gasoline Prices with Tree-Based Machine Learning Algorithms," Energies, MDPI, vol. 17(6), pages 1-14, March.
    25. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    26. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    27. Giovanni Cicceri & Giuseppe Inserra & Michele Limosani, 2020. "A Machine Learning Approach to Forecast Economic Recessions—An Italian Case Study," Mathematics, MDPI, vol. 8(2), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chalmovianský, Jakub & Němec, Daniel, 2022. "Assessing uncertainty of output gap estimates: Evidence from Visegrad countries," Economic Modelling, Elsevier, vol. 116(C).
    2. Cayen, Jean-Philippe & van Norden, Simon, 2005. "The reliability of Canadian output-gap estimates," The North American Journal of Economics and Finance, Elsevier, vol. 16(3), pages 373-393, December.
    3. Aastveit, Knut Are & Trovik, Tørres, 2014. "Estimating the output gap in real time: A factor model approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 180-193.
    4. João Sousa Andrade & António Portugal Duarte, 2014. "Output-gaps in the PIIGS Economies: An Ingredient of a Greek Tragedy," GEMF Working Papers 2014-06, GEMF, Faculty of Economics, University of Coimbra.
    5. Dana Kloudová, 2013. "Produkční mezera jako indikátor inflace - případ pro českou ekonomiku [Output Gap as Indicator of Inflation - Case for Czech Economy]," Politická ekonomie, Prague University of Economics and Business, vol. 2013(5), pages 639-652.
    6. Ahsan ul Haq Satti & Wasim Shahid Malik, 2017. "The Unreliability of Output-Gap Estimates in Real Time," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 56(3), pages 193-219.
    7. Xueting Yu & Yuhan Zhu & Guangming Lv, 2020. "Analysis of the Impact of China’s GDP Data Revision on Monetary Policy from the Perspective of Uncertainty," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 56(6), pages 1251-1274, May.
    8. Ince, Onur & Papell, David H., 2013. "The (un)reliability of real-time output gap estimates with revised data," Economic Modelling, Elsevier, vol. 33(C), pages 713-721.
    9. Nataliia Ostapenko, 2022. "Do output gap estimates improve inflation forecasts in Slovakia?," Working and Discussion Papers WP 4/2022, Research Department, National Bank of Slovakia.
    10. Arčabić, Vladimir & Panovska, Irina & Tica, Josip, 2024. "Business cycle synchronization and asymmetry in the European Union," Economic Modelling, Elsevier, vol. 139(C).
    11. Marcellino, Massimiliano & Musso, Alberto, 2011. "The reliability of real-time estimates of the euro area output gap," Economic Modelling, Elsevier, vol. 28(4), pages 1842-1856, July.
    12. Daniel Parra-Amado & Camilo Granados, 2025. "Output Gap Measurement after COVID for Colombia: Lessons from a Permanent-Transitory Approach," Borradores de Economia 1295, Banco de la Republica de Colombia.
    13. Vrontos, Spyridon D. & Galakis, John & Vrontos, Ioannis D., 2021. "Modeling and predicting U.S. recessions using machine learning techniques," International Journal of Forecasting, Elsevier, vol. 37(2), pages 647-671.
    14. L Christopher Plantier & Ozer Karagedikli, 2005. "Do so-called multivariate filters have better revision properties? An empirical analysis," Computing in Economics and Finance 2005 250, Society for Computational Economics.
    15. Morley, James & Rodríguez-Palenzuela, Diego & Sun, Yiqiao & Wong, Benjamin, 2023. "Estimating the euro area output gap using multivariate information and addressing the COVID-19 pandemic," European Economic Review, Elsevier, vol. 153(C).
    16. Plakandaras, Vasilios & Gupta, Rangan & Gogas, Periklis & Papadimitriou, Theophilos, 2015. "Forecasting the U.S. real house price index," Economic Modelling, Elsevier, vol. 45(C), pages 259-267.
    17. Dan Armeanu & Georgiana Camelia Crețan & Leonard Lache & Mihaela Mitroi, 2015. "Estimating Potential GDP for the Romanian Economy and Assessing the Sustainability of Economic Growth: A Multivariate Filter Approach," Sustainability, MDPI, vol. 7(3), pages 1-21, March.
    18. Hjelm, Göran & Jönsson, Kristian, 2010. "In Search of a Method for Measuring the Output Gap of the Swedish Economy," Working Papers 115, National Institute of Economic Research.
    19. Tom Bernhardsen & ØYvind Eitrheim, 2005. "Real-time data for Norway: Output gap revisions and challenges for monetary policy," Computing in Economics and Finance 2005 274, Society for Computational Economics.
    20. Bernhardsen, Tom & Eitrheim, Oyvind & Jore, Anne Sofie & Roisland, Oistein, 2005. "Real-time data for Norway: Challenges for monetary policy," The North American Journal of Economics and Finance, Elsevier, vol. 16(3), pages 333-349, December.

    More about this item

    Keywords

    Output gap; US; Machine learning; Forecasting;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04885268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.