IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v53y2023i6p425-445.html
   My bibliography  Save this article

Bombardier Aftermarket Demand Forecast with Machine Learning

Author

Listed:
  • Pierre Dodin

    (Bombardier, Saint-Laurent, Quebec H4R 1K2, Canada)

  • Jingyi Xiao

    (HEC Montréal, Montreal, Quebec H3T 2A7, Canada)

  • Yossiri Adulyasak

    (GERAD and Department of Logistics and Operations Management, HEC Montréal, Montreal, Quebec H3T 2A7, Canada)

  • Neda Etebari Alamdari

    (IVADO Labs, Montreal, Quebec H2S 3J9, Canada)

  • Lea Gauthier

    (IVADO Labs, Montreal, Quebec H2S 3J9, Canada)

  • Philippe Grangier

    (IVADO Labs, Montreal, Quebec H2S 3J9, Canada)

  • Paul Lemaitre

    (IVADO Labs, Montreal, Quebec H2S 3J9, Canada)

  • William L. Hamilton

    (Mila–Quebec AI Institute and School of Computer Science, McGill University, Montreal, Quebec H3A 2A7, Canada)

Abstract

Intermittent demand patterns are commonly present in business aircraft spare parts supply chains. Because of the infrequent arrivals and large variations in demand, aircraft aftermarket demand is difficult to forecast, which often leads to shortages or overstocking of spare parts. In this paper, we present the development and implementation of an advanced analytics framework at Bombardier Aerospace, which is carried out by the Bombardier inventory planning team and IVADO Labs to improve the aftermarket demand forecasting process. This integrated predictive analytics pipeline leverages machine-learning (ML) models and traditional time series models in a single framework in a systematic fashion. We also make use of a tree-based machine-learning method with a large set of input features to estimate two components of intermittent demand, namely demand sizes and interdemand intervals. Through the ML models, we incorporate different features, including those derived from flight data. Outputs of different forecasting models are combined using an ensemble technique that enhances the robustness and accuracy of the forecasts for different groups of aftermarket spare parts categorized by demand patterns. The validation results show an improvement in forecast accuracy of approximately 7% and in unbiased forecast of 5%. The ML-based Bombardier Aftermarket forecasting system has been successfully deployed and used to forecast the aftermarket demand at Bombardier of more than 1 billion Canadian dollars on a regular basis.

Suggested Citation

  • Pierre Dodin & Jingyi Xiao & Yossiri Adulyasak & Neda Etebari Alamdari & Lea Gauthier & Philippe Grangier & Paul Lemaitre & William L. Hamilton, 2023. "Bombardier Aftermarket Demand Forecast with Machine Learning," Interfaces, INFORMS, vol. 53(6), pages 425-445, November.
  • Handle: RePEc:inm:orinte:v:53:y:2023:i:6:p:425-445
    DOI: 10.1287/inte.2023.1164
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.2023.1164
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2023.1164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patrick Bajari & Denis Nekipelov & Stephen P. Ryan & Miaoyu Yang, 2015. "Demand Estimation with Machine Learning and Model Combination," NBER Working Papers 20955, National Bureau of Economic Research, Inc.
    2. L W G Strijbosch & R M J Heuts & E H M van der Schoot, 2000. "A combined forecast—inventory control procedure for spare parts," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(10), pages 1184-1192, October.
    3. Bergmeir, Christoph & Hyndman, Rob J. & Koo, Bonsoo, 2018. "A note on the validity of cross-validation for evaluating autoregressive time series prediction," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 70-83.
    4. Snyder, Ralph, 2002. "Forecasting sales of slow and fast moving inventories," European Journal of Operational Research, Elsevier, vol. 140(3), pages 684-699, August.
    5. Kolassa, Stephan, 2011. "Combining exponential smoothing forecasts using Akaike weights," International Journal of Forecasting, Elsevier, vol. 27(2), pages 238-251, April.
    6. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    7. A A Syntetos & J E Boylan & J D Croston, 2005. "On the categorization of demand patterns," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 495-503, May.
    8. J E Boylan & A A Syntetos & G C Karakostas, 2008. "Classification for forecasting and stock control: a case study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(4), pages 473-481, April.
    9. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    10. Fotios Petropoulos & Nikolaos Kourentzes, 2015. "Forecast combinations for intermittent demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(6), pages 914-924, June.
    11. Teunter, R.H. & Syntetos, A.A. & Babai, M.Z., 2010. "Determining order-up-to levels under periodic review for compound binomial (intermittent) demand," European Journal of Operational Research, Elsevier, vol. 203(3), pages 619-624, June.
    12. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "M5 accuracy competition: Results, findings, and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1346-1364.
    13. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    14. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    15. Kourentzes, Nikolaos, 2013. "Intermittent demand forecasts with neural networks," International Journal of Production Economics, Elsevier, vol. 143(1), pages 198-206.
    16. Syntetos, Aris A. & Boylan, John E., 2006. "On the stock control performance of intermittent demand estimators," International Journal of Production Economics, Elsevier, vol. 103(1), pages 36-47, September.
    17. Gutierrez, Rafael S. & Solis, Adriano O. & Mukhopadhyay, Somnath, 2008. "Lumpy demand forecasting using neural networks," International Journal of Production Economics, Elsevier, vol. 111(2), pages 409-420, February.
    18. Willemain, Thomas R. & Smart, Charles N. & Shockor, Joseph H. & DeSautels, Philip A., 1994. "Forecasting intermittent demand in manufacturing: a comparative evaluation of Croston's method," International Journal of Forecasting, Elsevier, vol. 10(4), pages 529-538, December.
    19. Willemain, Thomas R. & Smart, Charles N. & Schwarz, Henry F., 2004. "A new approach to forecasting intermittent demand for service parts inventories," International Journal of Forecasting, Elsevier, vol. 20(3), pages 375-387.
    20. Alstrom, Poul & Madsen, Per, 1996. "Tracking signals in inventory control systems A simulation study," International Journal of Production Economics, Elsevier, vol. 45(1-3), pages 293-302, August.
    21. Syntetos, Aris A. & Boylan, John E., 2005. "The accuracy of intermittent demand estimates," International Journal of Forecasting, Elsevier, vol. 21(2), pages 303-314.
    22. Spyros Makridakis & Robert L. Winkler, 1983. "Averages of Forecasts: Some Empirical Results," Management Science, INFORMS, vol. 29(9), pages 987-996, September.
    23. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    24. Porras, Eric & Dekker, Rommert, 2008. "An inventory control system for spare parts at a refinery: An empirical comparison of different re-order point methods," European Journal of Operational Research, Elsevier, vol. 184(1), pages 101-132, January.
    25. F R Johnston & J E Boylan & E A Shale, 2003. "An examination of the size of orders from customers, their characterisation and the implications for inventory control of slow moving items," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 833-837, August.
    26. Rita Gamberini & Francesco Lolli & Bianca Rimini & Fabio Sgarbossa, 2010. "Forecasting of Sporadic Demand Patterns with Seasonality and Trend Components: An Empirical Comparison between Holt-Winters and (S)ARIMA Methods," Mathematical Problems in Engineering, Hindawi, vol. 2010, pages 1-14, July.
    27. Jose, Victor Richmond R. & Winkler, Robert L., 2008. "Simple robust averages of forecasts: Some empirical results," International Journal of Forecasting, Elsevier, vol. 24(1), pages 163-169.
    28. Syntetos, A. A. & Boylan, J. E., 2001. "On the bias of intermittent demand estimates," International Journal of Production Economics, Elsevier, vol. 71(1-3), pages 457-466, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Pinçe, Çerağ & Turrini, Laura & Meissner, Joern, 2021. "Intermittent demand forecasting for spare parts: A Critical review," Omega, Elsevier, vol. 105(C).
    3. Pennings, Clint L.P. & van Dalen, Jan & van der Laan, Erwin A., 2017. "Exploiting elapsed time for managing intermittent demand for spare parts," European Journal of Operational Research, Elsevier, vol. 258(3), pages 958-969.
    4. Kourentzes, Nikolaos, 2014. "On intermittent demand model optimisation and selection," International Journal of Production Economics, Elsevier, vol. 156(C), pages 180-190.
    5. Evangelos Spiliotis & Spyros Makridakis & Artemios-Anargyros Semenoglou & Vassilios Assimakopoulos, 2022. "Comparison of statistical and machine learning methods for daily SKU demand forecasting," Operational Research, Springer, vol. 22(3), pages 3037-3061, July.
    6. Teunter, Ruud H. & Syntetos, Aris A. & Zied Babai, M., 2011. "Intermittent demand: Linking forecasting to inventory obsolescence," European Journal of Operational Research, Elsevier, vol. 214(3), pages 606-615, November.
    7. K Nikolopoulos & A A Syntetos & J E Boylan & F Petropoulos & V Assimakopoulos, 2011. "An aggregate–disaggregate intermittent demand approach (ADIDA) to forecasting: an empirical proposition and analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 544-554, March.
    8. Kourentzes, Nikolaos, 2013. "Intermittent demand forecasts with neural networks," International Journal of Production Economics, Elsevier, vol. 143(1), pages 198-206.
    9. Li, Chongshou & Lim, Andrew, 2018. "A greedy aggregation–decomposition method for intermittent demand forecasting in fashion retailing," European Journal of Operational Research, Elsevier, vol. 269(3), pages 860-869.
    10. Hu, Qiwei & Boylan, John E. & Chen, Huijing & Labib, Ashraf, 2018. "OR in spare parts management: A review," European Journal of Operational Research, Elsevier, vol. 266(2), pages 395-414.
    11. Bacchetti, Andrea & Saccani, Nicola, 2012. "Spare parts classification and demand forecasting for stock control: Investigating the gap between research and practice," Omega, Elsevier, vol. 40(6), pages 722-737.
    12. Syntetos, Aris A. & Zied Babai, M. & Gardner, Everette S., 2015. "Forecasting intermittent inventory demands: simple parametric methods vs. bootstrapping," Journal of Business Research, Elsevier, vol. 68(8), pages 1746-1752.
    13. Turrini, Laura & Meissner, Joern, 2019. "Spare parts inventory management: New evidence from distribution fitting," European Journal of Operational Research, Elsevier, vol. 273(1), pages 118-130.
    14. Sarlo, Rodrigo & Fernandes, Cristiano & Borenstein, Denis, 2023. "Lumpy and intermittent retail demand forecasts with score-driven models," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1146-1160.
    15. Hasni, M. & Aguir, M.S. & Babai, M.Z. & Jemai, Z., 2019. "On the performance of adjusted bootstrapping methods for intermittent demand forecasting," International Journal of Production Economics, Elsevier, vol. 216(C), pages 145-153.
    16. Jože Martin Rožanec & Blaž Fortuna & Dunja Mladenić, 2022. "Reframing Demand Forecasting: A Two-Fold Approach for Lumpy and Intermittent Demand," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    17. Babai, M.Z. & Dallery, Y. & Boubaker, S. & Kalai, R., 2019. "A new method to forecast intermittent demand in the presence of inventory obsolescence," International Journal of Production Economics, Elsevier, vol. 209(C), pages 30-41.
    18. Babai, Zied & Boylan, John E. & Kolassa, Stephan & Nikolopoulos, Konstantinos, 2016. "Supply chain forecasting: Theory, practice, their gap and the futureAuthor-Name: Syntetos, Aris A," European Journal of Operational Research, Elsevier, vol. 252(1), pages 1-26.
    19. Prak, Dennis & Rogetzer, Patricia, 2022. "Timing intermittent demand with time-varying order-up-to levels," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1126-1136.
    20. Petropoulos, Fotios & Makridakis, Spyros & Assimakopoulos, Vassilios & Nikolopoulos, Konstantinos, 2014. "‘Horses for Courses’ in demand forecasting," European Journal of Operational Research, Elsevier, vol. 237(1), pages 152-163.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:53:y:2023:i:6:p:425-445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.