IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v82y2017i4d10.1007_s11336-017-9557-x.html
   My bibliography  Save this article

Generalized Network Psychometrics: Combining Network and Latent Variable Models

Author

Listed:
  • Sacha Epskamp

    (University of Amsterdam)

  • Mijke Rhemtulla

    (University of Amsterdam)

  • Denny Borsboom

    (University of Amsterdam)

Abstract

We introduce the network model as a formal psychometric model, conceptualizing the covariance between psychometric indicators as resulting from pairwise interactions between observable variables in a network structure. This contrasts with standard psychometric models, in which the covariance between test items arises from the influence of one or more common latent variables. Here, we present two generalizations of the network model that encompass latent variable structures, establishing network modeling as parts of the more general framework of structural equation modeling (SEM). In the first generalization, we model the covariance structure of latent variables as a network. We term this framework latent network modeling (LNM) and show that, with LNM, a unique structure of conditional independence relationships between latent variables can be obtained in an explorative manner. In the second generalization, the residual variance–covariance structure of indicators is modeled as a network. We term this generalization residual network modeling (RNM) and show that, within this framework, identifiable models can be obtained in which local independence is structurally violated. These generalizations allow for a general modeling framework that can be used to fit, and compare, SEM models, network models, and the RNM and LNM generalizations. This methodology has been implemented in the free-to-use software package lvnet, which contains confirmatory model testing as well as two exploratory search algorithms: stepwise search algorithms for low-dimensional datasets and penalized maximum likelihood estimation for larger datasets. We show in simulation studies that these search algorithms perform adequately in identifying the structure of the relevant residual or latent networks. We further demonstrate the utility of these generalizations in an empirical example on a personality inventory dataset.

Suggested Citation

  • Sacha Epskamp & Mijke Rhemtulla & Denny Borsboom, 2017. "Generalized Network Psychometrics: Combining Network and Latent Variable Models," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 904-927, December.
  • Handle: RePEc:spr:psycho:v:82:y:2017:i:4:d:10.1007_s11336-017-9557-x
    DOI: 10.1007/s11336-017-9557-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-017-9557-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-017-9557-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiahua Chen & Zehua Chen, 2008. "Extended Bayesian information criteria for model selection with large model spaces," Biometrika, Biometrika Trust, vol. 95(3), pages 759-771.
    2. Kun Li & Ravi Sankar & Ke Cao & Yael Arbel & Emanuel Donchin, 2012. "A New Single Trial P300 Classification Method," International Journal of E-Health and Medical Communications (IJEHMC), IGI Global, vol. 3(4), pages 31-41, October.
    3. Michael W. Browne & Robert Cudeck, 1992. "Alternative Ways of Assessing Model Fit," Sociological Methods & Research, , vol. 21(2), pages 230-258, November.
    4. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    5. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    6. Jules Ellis & Brian Junker, 1997. "Tail-measurability in monotone latent variable models," Psychometrika, Springer;The Psychometric Society, vol. 62(4), pages 495-523, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ting & Wang, Lei, 2020. "Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    2. Yinjun Chen & Hao Ming & Hu Yang, 2024. "Efficient variable selection for high-dimensional multiplicative models: a novel LPRE-based approach," Statistical Papers, Springer, vol. 65(6), pages 3713-3737, August.
    3. Qingliang Fan & Yaqian Wu, 2020. "Endogenous Treatment Effect Estimation with some Invalid and Irrelevant Instruments," Papers 2006.14998, arXiv.org.
    4. Achim Ahrens & Christian B. Hansen & Mark E. Schaffer, 2020. "lassopack: Model selection and prediction with regularized regression in Stata," Stata Journal, StataCorp LLC, vol. 20(1), pages 176-235, March.
    5. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    6. Yunquan Song & Zitong Li & Minglu Fang, 2022. "Robust Variable Selection Based on Penalized Composite Quantile Regression for High-Dimensional Single-Index Models," Mathematics, MDPI, vol. 10(12), pages 1-17, June.
    7. Marzia Freo & Alessandra Luati, 2024. "Lasso-based variable selection methods in text regression: the case of short texts," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(1), pages 69-99, March.
    8. Dai, Linlin & Chen, Kani & Sun, Zhihua & Liu, Zhenqiu & Li, Gang, 2018. "Broken adaptive ridge regression and its asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 334-351.
    9. Ruggieri, Eric & Lawrence, Charles E., 2012. "On efficient calculations for Bayesian variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1319-1332.
    10. Paweł Teisseyre & Robert A. Kłopotek & Jan Mielniczuk, 2016. "Random Subspace Method for high-dimensional regression with the R package regRSM," Computational Statistics, Springer, vol. 31(3), pages 943-972, September.
    11. Huiwen Wang & Ruiping Liu & Shanshan Wang & Zhichao Wang & Gilbert Saporta, 2020. "Ultra-high dimensional variable screening via Gram–Schmidt orthogonalization," Computational Statistics, Springer, vol. 35(3), pages 1153-1170, September.
    12. Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016. "Sparse Graphical Vector Autoregression: A Bayesian Approach," Annals of Economics and Statistics, GENES, issue 123-124, pages 333-361.
    13. He Jiang, 2023. "Forecasting global solar radiation using a robust regularization approach with mixture kernels," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 1989-2010, December.
    14. Alain Hecq & Luca Margaritella & Stephan Smeekes, 2023. "Granger Causality Testing in High-Dimensional VARs: A Post-Double-Selection Procedure," Journal of Financial Econometrics, Oxford University Press, vol. 21(3), pages 915-958.
    15. Jiang, He & Tao, Changqi & Dong, Yao & Xiong, Ren, 2021. "Robust low-rank multiple kernel learning with compound regularization," European Journal of Operational Research, Elsevier, vol. 295(2), pages 634-647.
    16. Wang, Tao & Zhu, Lixing, 2013. "Sparse sufficient dimension reduction using optimal scoring," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 223-232.
    17. She, Yiyuan, 2012. "An iterative algorithm for fitting nonconvex penalized generalized linear models with grouped predictors," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2976-2990.
    18. Shiqiang Jin & Gyuhyeong Goh, 2021. "Bayesian selection of best subsets via hybrid search," Computational Statistics, Springer, vol. 36(3), pages 1991-2007, September.
    19. Chen Xu & Jiahua Chen, 2014. "The Sparse MLE for Ultrahigh-Dimensional Feature Screening," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1257-1269, September.
    20. Wei Sun & Lexin Li, 2012. "Multiple Loci Mapping via Model-free Variable Selection," Biometrics, The International Biometric Society, vol. 68(1), pages 12-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:82:y:2017:i:4:d:10.1007_s11336-017-9557-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.