IDEAS home Printed from https://ideas.repec.org/a/eee/telpol/v47y2023i8s030859612300109x.html
   My bibliography  Save this article

The use of ICTs and income distribution in Brazil: A machine learning explanation using SHAP values

Author

Listed:
  • Herrera, Gabriel Paes
  • Constantino, Michel
  • Su, Jen-Je
  • Naranpanawa, Athula

Abstract

This study explores the complex relationship between information and communication technologies (ICTs) and socioeconomic characteristics. We employ a cutting-edge explainable machine learning approach, known as SHAP values, to interpret an XGBoost and neural network model, as well as benchmark traditional econometric methods. The application of machine learning algorithms combined with the SHAP methodology reveals complex nonlinear relationships in the data and important insights to guide tailored policy-making. Our results suggest that there is an interaction between education and ICTs that contributes to income prediction. Furthermore, level of education and age are found to be positively associated with income, while gender presents a negative relationship; that is, women earn less than men on average. This study highlights the need for more efficient public policies to fight gender inequality in Brazil. It is also important to introduce policies that promote quality education and the teaching of skills related to technology and digitalization to prepare individuals for changes in the job market and avoid the digital divide and increasing social inequality.

Suggested Citation

  • Herrera, Gabriel Paes & Constantino, Michel & Su, Jen-Je & Naranpanawa, Athula, 2023. "The use of ICTs and income distribution in Brazil: A machine learning explanation using SHAP values," Telecommunications Policy, Elsevier, vol. 47(8).
  • Handle: RePEc:eee:telpol:v:47:y:2023:i:8:s030859612300109x
    DOI: 10.1016/j.telpol.2023.102598
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030859612300109X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.telpol.2023.102598?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joseph E. Aldy & W. Kip Viscusi, 2008. "Adjusting the Value of a Statistical Life for Age and Cohort Effects," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 573-581, August.
    2. Cheng, Chih-Yang & Chien, Mei-Se & Lee, Chien-Chiang, 2021. "ICT diffusion, financial development, and economic growth: An international cross-country analysis," Economic Modelling, Elsevier, vol. 94(C), pages 662-671.
    3. Diogo Signor & Jongsung Kim & Edinaldo Tebaldi, 2019. "Persistence and determinants of income inequality: The Brazilian case," Review of Development Economics, Wiley Blackwell, vol. 23(4), pages 1748-1767, November.
    4. Kais Saidi & Chebli Mongi, 2018. "The Effect of Education, R&D and ICT on Economic Growth in High Income Countries," Economics Bulletin, AccessEcon, vol. 38(2), pages 810-825.
    5. Santiago Carbo-Valverde & Pedro Cuadros-Solas & Francisco Rodríguez-Fernández, 2020. "A machine learning approach to the digitalization of bank customers: Evidence from random and causal forests," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-39, October.
    6. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    7. Vu, Khuong M., 2011. "ICT as a source of economic growth in the information age: Empirical evidence from the 1996-2005 period," Telecommunications Policy, Elsevier, vol. 35(4), pages 357-372, May.
    8. Robert J. Gordon, 2003. "Exploding Productivity Growth: Context, Causes, and Implications," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 34(2), pages 207-298.
    9. Njoh, Ambe J., 2018. "The relationship between modern Information and Communications Technologies (ICTs) and development in Africa," Utilities Policy, Elsevier, vol. 50(C), pages 83-90.
    10. Jean-Marie John-Mathews, 2022. "Some critical and ethical perspectives on the empirical turn of AI interpretability," Post-Print hal-03395823, HAL.
    11. Silva, Thiago Christiano & Coelho, Florângela Cunha & Ehrl, Philipp & Tabak, Benjamin Miranda, 2020. "Internet access in recessionary periods: The case of Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    12. Kami Richmond & Russell E. Triplett, 2018. "ICT and income inequality: a cross-national perspective," International Review of Applied Economics, Taylor & Francis Journals, vol. 32(2), pages 195-214, March.
    13. Cooray, Upul & Watt, Richard G. & Tsakos, Georgios & Heilmann, Anja & Hariyama, Masanori & Yamamoto, Takafumi & Kuruppuarachchige, Isuruni & Kondo, Katsunori & Osaka, Ken & Aida, Jun, 2021. "Importance of socioeconomic factors in predicting tooth loss among older adults in Japan: Evidence from a machine learning analysis," Social Science & Medicine, Elsevier, vol. 291(C).
    14. Johannessen, Jon-Arild & Olsen, Bjørn, 2010. "The future of value creation and innovations: Aspects of a theory of value creation and innovation in a global knowledge economy," International Journal of Information Management, Elsevier, vol. 30(6), pages 502-511.
    15. World Bank, 2022. "Global Economic Prospects, January 2022," World Bank Publications - Books, The World Bank Group, number 36519, August.
    16. Anna Fruttero & Alexandre Ribeiro Leichsenring & Luis Henrique Paiva, 2020. "Social Programs and Formal Employment: Evidence from the Brazilian Bolsa Família Program," IMF Working Papers 2020/099, International Monetary Fund.
    17. Reza Ashraf Ganjoei & Hossein Akbarifard & Mashaallah Mashinchi & Sayyed Abdol Majid Jalaee Esfandabadi, 2021. "Applying of Fuzzy Nonlinear Regression to Investigate the Effect of Information and Communication Technology (ICT) on Income Distribution," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-11, June.
    18. Bauer, Johannes M., 2018. "The Internet and income inequality: Socio-economic challenges in a hyperconnected society," Telecommunications Policy, Elsevier, vol. 42(4), pages 333-343.
    19. Danquah, Michael & Iddrisu, Abdul Malik & Boakye, Ernest Owusu & Owusu, Solomon, 2021. "Do gender wage differences within households influence women's empowerment and welfare? Evidence from Ghana," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 916-932.
    20. Venturini, Francesco, 2022. "Intelligent technologies and productivity spillovers: Evidence from the Fourth Industrial Revolution," Journal of Economic Behavior & Organization, Elsevier, vol. 194(C), pages 220-243.
    21. Albiman, Masoud Mohammed & Sulong, Zunaidah, 2017. "The linear and non-linear impacts of ICT on economic growth, of disaggregate income groups within SSA region," Telecommunications Policy, Elsevier, vol. 41(7), pages 555-572.
    22. John-Mathews, Jean-Marie, 2022. "Some critical and ethical perspectives on the empirical turn of AI interpretability," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    23. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    24. Chien, Mei-Se & Cheng, Chih-Yang & Kurniawati, Meta Ayu, 2020. "The non-linear relationship between ICT diffusion and financial development," Telecommunications Policy, Elsevier, vol. 44(9).
    25. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    26. Antulov-Fantulin, Nino & Lagravinese, Raffaele & Resce, Giuliano, 2021. "Predicting bankruptcy of local government: A machine learning approach," Journal of Economic Behavior & Organization, Elsevier, vol. 183(C), pages 681-699.
    27. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    28. Hidalgo, Antonio & Gabaly, Samuel & Morales-Alonso, Gustavo & Urueña, Alberto, 2020. "The digital divide in light of sustainable development: An approach through advanced machine learning techniques," Technological Forecasting and Social Change, Elsevier, vol. 150(C).
    29. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiao, Jianling & Song, Jiangfeng & Ding, Tao, 2024. "The impact of synergistic development of renewable energy and digital economy on energy intensity: Evidence from 33 countries," Energy, Elsevier, vol. 295(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Njangang, Henri & Beleck, Alim & Tadadjeu, Sosson & Kamguia, Brice, 2022. "Do ICTs drive wealth inequality? Evidence from a dynamic panel analysis," Telecommunications Policy, Elsevier, vol. 46(2).
    2. Henri Njangang & Alim Beleck & Sosson Tadadjeu & Brice Kamguia, 2021. "Do ICTs drive wealth inequality? Evidence from a dynamic panel analysis," Working Papers 21/057, European Xtramile Centre of African Studies (EXCAS).
    3. Nchofoung, Tii N. & Asongu, Simplice A., 2022. "ICT for sustainable development: Global comparative evidence of globalisation thresholds," Telecommunications Policy, Elsevier, vol. 46(5).
    4. Henri Njangang & Alim Beleck & Sosson Tadadjeu & Brice Kamguia, 2021. "Do ICTs drive wealth inequality? Evidence from a dynamic panel analysis," Working Papers of the African Governance and Development Institute. 21/057, African Governance and Development Institute..
    5. Chen, Ya & Tsionas, Mike G. & Zelenyuk, Valentin, 2021. "LASSO+DEA for small and big wide data," Omega, Elsevier, vol. 102(C).
    6. Julien Chevallier & Dominique Guégan & Stéphane Goutte, 2021. "Is It Possible to Forecast the Price of Bitcoin?," Forecasting, MDPI, vol. 3(2), pages 1-44, May.
    7. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    8. Charles Shaaba Saba & Nicholas Ngepah & Nicholas M. Odhiambo, 2024. "Information and Communication Technology (ICT), Growth and Development in Developing Regions: Evidence from a Comparative Analysis and a New Approach," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 14700-14748, September.
    9. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    10. Baaken, Dominik & Hess, Sebastian, 2021. "Regionale Milchmengenprognose: Regressionsmodelle und Maschinelles Lernen im Vergleich," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317056, German Association of Agricultural Economists (GEWISOLA).
    11. Gabriel Okasa, 2022. "Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance," Papers 2201.12692, arXiv.org.
    12. Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
    13. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    14. James T. E. Chapman & Ajit Desai, 2023. "Macroeconomic Predictions Using Payments Data and Machine Learning," Forecasting, MDPI, vol. 5(4), pages 1-32, November.
    15. Khan, Faridoon & Muhammadullah, Sara & Sharif, Arshian & Lee, Chien-Chiang, 2024. "The role of green energy stock market in forecasting China's crude oil market: An application of IIS approach and sparse regression models," Energy Economics, Elsevier, vol. 130(C).
    16. Ya Chen & Mike Tsionas & Valentin Zelenyuk, 2020. "LASSO DEA for small and big data," CEPA Working Papers Series WP092020, School of Economics, University of Queensland, Australia.
    17. Matteo Bagnara, 2024. "Asset Pricing and Machine Learning: A critical review," Journal of Economic Surveys, Wiley Blackwell, vol. 38(1), pages 27-56, February.
    18. Adam N. Smith & Stephan Seiler & Ishant Aggarwal, 2023. "Optimal Price Targeting," Marketing Science, INFORMS, vol. 42(3), pages 476-499, May.
    19. Baaken, Dominik & Hess, Sebastian, 2021. "Forecasting Regional Milk Production Quantity: A Comparison of Regression Models and Machine Learning," 2021 Conference, August 17-31, 2021, Virtual 315117, International Association of Agricultural Economists.
    20. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:telpol:v:47:y:2023:i:8:s030859612300109x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30471/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.