IDEAS home Printed from https://ideas.repec.org/a/eee/jeborg/v183y2021icp681-699.html
   My bibliography  Save this article

Predicting bankruptcy of local government: A machine learning approach

Author

Listed:
  • Antulov-Fantulin, Nino
  • Lagravinese, Raffaele
  • Resce, Giuliano

Abstract

In this paper we analyze the predictability of the bankruptcy of 7795 Italian municipalities in the period 2009–2016. The prediction task is extremely hard due to the small number of bankruptcy cases, on which learning is possible. Besides historical financial data for each municipality, we use alternative institutional data along with the socio-demographic and economic context. The predictability is analyzed through the performance of the statistical and machine learning models with a receiver operating characteristic curve and the precision-recall curve. Our results suggest that it is possible to make out-of-sample predictions with a high true positive rate and low false-positive rate. The model shows that some non-financial features (e.g. geographical area) are more important than many financial features to predict the default of municipalities. Among financial indicators, the important features are mainly connected to the Deficit and the Debt of Municipalities. Among the socio-demographic characteristics of administrators, the gender and the age of members in council are among the top 10 features in terms of importance for predicting municipal defaults.

Suggested Citation

  • Antulov-Fantulin, Nino & Lagravinese, Raffaele & Resce, Giuliano, 2021. "Predicting bankruptcy of local government: A machine learning approach," Journal of Economic Behavior & Organization, Elsevier, vol. 183(C), pages 681-699.
  • Handle: RePEc:eee:jeborg:v:183:y:2021:i:c:p:681-699
    DOI: 10.1016/j.jebo.2021.01.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167268121000251
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jebo.2021.01.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Katsuyuki Tanaka & Takuo Higashide & Takuji Kinkyo & Shigeyuki Hamori, 2019. "Analyzing Industry‐Level Vulnerability By Predicting Financial Bankruptcy," Economic Inquiry, Western Economic Association International, vol. 57(4), pages 2017-2034, October.
    2. Liran Einav & Jonathan Levin, 2014. "The Data Revolution and Economic Analysis," Innovation Policy and the Economy, University of Chicago Press, vol. 14(1), pages 1-24.
    3. Alessi, Lucia & Detken, Carsten, 2018. "Identifying excessive credit growth and leverage," Journal of Financial Stability, Elsevier, vol. 35(C), pages 215-225.
    4. Daniele, Gianmarco, 2019. "Strike one to educate one hundred: Organized crime, political selection and politicians’ ability," Journal of Economic Behavior & Organization, Elsevier, vol. 159(C), pages 650-662.
    5. Brollo, Fernanda & Troiano, Ugo, 2016. "What happens when a woman wins an election? Evidence from close races in Brazil," Journal of Development Economics, Elsevier, vol. 122(C), pages 28-45.
    6. Ben Taieb, Souhaib & Hyndman, Rob J., 2014. "A gradient boosting approach to the Kaggle load forecasting competition," International Journal of Forecasting, Elsevier, vol. 30(2), pages 382-394.
    7. Alberto Alesina & Traviss Cassidy & Ugo Troiano, 2019. "Old and Young Politicians," Economica, London School of Economics and Political Science, vol. 86(344), pages 689-727, October.
    8. Carmen M. Reinhart & Graciela L. Kaminsky, 1999. "The Twin Crises: The Causes of Banking and Balance-of-Payments Problems," American Economic Review, American Economic Association, vol. 89(3), pages 473-500, June.
    9. Bordo, Michael D. & Meissner, Christopher M., 2012. "Does inequality lead to a financial crisis?," Journal of International Money and Finance, Elsevier, vol. 31(8), pages 2147-2161.
    10. Katsuyuki Tanaka & Takuji Kinkyo & Shigeyuki Hamori, 2018. "Financial Hazard Map: Financial Vulnerability Predicted by a Random Forests Classification Model," Sustainability, MDPI, vol. 10(5), pages 1-18, May.
    11. Caggiano, Giovanni & Calice, Pietro & Leonida, Leone & Kapetanios, George, 2016. "Comparing logit-based early warning systems: Does the duration of systemic banking crises matter?," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 104-116.
    12. Bluwstein, Kristina & Buckmann, Marcus & Joseph, Andreas & Kapadia, Sujit & Şimşek, Özgür, 2023. "Credit growth, the yield curve and financial crisis prediction: Evidence from a machine learning approach," Journal of International Economics, Elsevier, vol. 145(C).
    13. Evgenia Gorina & Craig Maher & Marc Joffe, 2018. "Local Fiscal Distress: Measurement and Prediction," Public Budgeting & Finance, Wiley Blackwell, vol. 38(1), pages 72-94, March.
    14. Andrew Berg & Catherine Pattillo, 1999. "Are Currency Crises Predictable? A Test," IMF Staff Papers, Palgrave Macmillan, vol. 46(2), pages 1-1.
    15. Stefano Gagliarducci & M. Daniele Paserman, 2012. "Gender Interactions within Hierarchies: Evidence from the Political Arena," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 1021-1052.
    16. Guyot, Alexis & Doumpos, Michael & Zopounidis, Constantin, 2016. "A novel multi-attribute benchmarking approach for assessing the financial performance of local governments: Empirical evidence from FranceAuthor-Name: Galariotis, Emilios," European Journal of Operational Research, Elsevier, vol. 248(1), pages 301-317.
    17. Climent, Francisco & Momparler, Alexandre & Carmona, Pedro, 2019. "Anticipating bank distress in the Eurozone: An Extreme Gradient Boosting approach," Journal of Business Research, Elsevier, vol. 101(C), pages 885-896.
    18. Caggiano, Giovanni & Calice, Pietro & Leonida, Leone, 2014. "Early warning systems and systemic banking crises in low income countries: A multinomial logit approach," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 258-269.
    19. Cohen, Sandra & Doumpos, Michael & Neofytou, Evi & Zopounidis, Constantin, 2012. "Assessing financial distress where bankruptcy is not an option: An alternative approach for local municipalities," European Journal of Operational Research, Elsevier, vol. 218(1), pages 270-279.
    20. Roy, Saktinil & Kemme, David M., 2012. "Causes of banking crises: Deregulation, credit booms and asset bubbles, then and now," International Review of Economics & Finance, Elsevier, vol. 24(C), pages 270-294.
    21. Stewart Jones & R. G. Walker, 2007. "Explanators of Local Government Distress," Abacus, Accounting Foundation, University of Sydney, vol. 43(3), pages 396-418, September.
    22. Emilios C. C Galariotis & Alexis Guyot & Michael Doumpos & Constantin Zopounidis, 2016. "A novel multi-attribute benchmarking approach for assessing the financial performance of local governments: Empirical evidence from France," Post-Print hal-01194629, HAL.
    23. Daniel C. Hardy & Ceyla Pazarbasioglu, 1999. "Determinants and Leading Indicators of Banking Crises: Further Evidence," IMF Staff Papers, Palgrave Macmillan, vol. 46(3), pages 1-1.
    24. Raghabendra Chattopadhyay & Esther Duflo, 2004. "Women as Policy Makers: Evidence from a Randomized Policy Experiment in India," Econometrica, Econometric Society, vol. 72(5), pages 1409-1443, September.
    25. Kim Ristolainen, 2018. "Predicting Banking Crises with Artificial Neural Networks: The Role of Nonlinearity and Heterogeneity," Scandinavian Journal of Economics, Wiley Blackwell, vol. 120(1), pages 31-62, January.
    26. Mark Joy & Marek Rusnák & Kateřina Šmídková & Bořek Vašíček, 2017. "Banking and Currency Crises: Differential Diagnostics for Developed Countries," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 22(1), pages 44-67, January.
    27. Douglas W. Diamond & Raghuram G. Rajan, 2001. "Liquidity Risk, Liquidity Creation, and Financial Fragility: A Theory of Banking," Journal of Political Economy, University of Chicago Press, vol. 109(2), pages 287-327, April.
    28. Takaya Saito & Marc Rehmsmeier, 2015. "The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-21, March.
    29. Gianmarco Daniele & Benny Geys, 2015. "Organised Crime, Institutions and Political Quality: Empirical Evidence from Italian Municipalities," Economic Journal, Royal Economic Society, vol. 125(586), pages 233-255, August.
    30. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    31. Laeven, Luc & Levine, Ross, 2009. "Bank governance, regulation and risk taking," Journal of Financial Economics, Elsevier, vol. 93(2), pages 259-275, August.
    32. Wenting Zhang & Shigeyuki Hamori, 2020. "Do Machine Learning Techniques and Dynamic Methods Help Forecast US Natural Gas Crises?," Energies, MDPI, vol. 13(9), pages 1-22, May.
    33. Markus Holopainen & Peter Sarlin, 2017. "Toward robust early-warning models: a horse race, ensembles and model uncertainty," Quantitative Finance, Taylor & Francis Journals, vol. 17(12), pages 1933-1963, December.
    34. Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2018. "Human Decisions and Machine Predictions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(1), pages 237-293.
    35. Yulian Zhang & Shigeyuki Hamori, 2020. "Forecasting Crude Oil Market Crashes Using Machine Learning Technologies," Energies, MDPI, vol. 13(10), pages 1-14, May.
    36. Eero Tölö & Helinä Laakkonen & Simo Kalatie, 2018. "Evaluating Indicators for Use in Setting the Countercyclical Capital Buffer," International Journal of Central Banking, International Journal of Central Banking, vol. 14(2), pages 51-112, March.
    37. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    38. Andini, Monica & Ciani, Emanuele & de Blasio, Guido & D'Ignazio, Alessio & Salvestrini, Viola, 2018. "Targeting with machine learning: An application to a tax rebate program in Italy," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 86-102.
    39. Lagravinese, Raffaele & Liberati, Paolo & Resce, Giuliano, 2019. "Exploring health outcomes by stochastic multicriteria acceptability analysis: An application to Italian regions," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1168-1179.
    40. Emilios C. C Galariotis & Alexis Guyot & Michael Doumpos & Constantin Zopounidis, 2016. "A novel multi-attribute benchmarking approach for assessing the financial performance of local governments: Empirical evidence from France," Post-Print hal-02879848, HAL.
    41. Wildmer Daniel Gregori & Luigi Marattin, 2019. "Determinants of fiscal distress in Italian municipalities," Empirical Economics, Springer, vol. 56(4), pages 1269-1281, April.
    42. Tanaka, Katsuyuki & Kinkyo, Takuji & Hamori, Shigeyuki, 2016. "Random forests-based early warning system for bank failures," Economics Letters, Elsevier, vol. 148(C), pages 118-121.
    43. Carsten Detken & Olaf Weeken & Lucia Alessi & Diana Bonfim & Miguel M. Boucinha & Christian Castro & Sebastian Frontczak & Gaston Giordana & Julia Giese & Nadya Jahn & Jan Kakes & Benjamin Klaus & Jan, 2014. "Operationalising the countercyclical capital buffer: indicator selection, threshold identification and calibration options," ESRB Occasional Paper Series 05, European Systemic Risk Board.
    44. Beutel, Johannes & List, Sophia & von Schweinitz, Gregor, 2019. "Does machine learning help us predict banking crises?," Journal of Financial Stability, Elsevier, vol. 45(C).
    45. Carmona, Pedro & Climent, Francisco & Momparler, Alexandre, 2019. "Predicting failure in the U.S. banking sector: An extreme gradient boosting approach," International Review of Economics & Finance, Elsevier, vol. 61(C), pages 304-323.
    46. Salvatore Greco & Alessio Ishizaka & Benedetto Matarazzo & Gianpiero Torrisi, 2018. "Stochastic multi-attribute acceptability analysis (SMAA): an application to the ranking of Italian regions," Regional Studies, Taylor & Francis Journals, vol. 52(4), pages 585-600, April.
    47. Asli Demirgüç-Kunt & Enrica Detragiache, 1998. "The Determinants of Banking Crises in Developing and Developed Countries," IMF Staff Papers, Palgrave Macmillan, vol. 45(1), pages 81-109, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Casabianca, Elizabeth Jane & Catalano, Michele & Forni, Lorenzo & Giarda, Elena & Passeri, Simone, 2022. "A machine learning approach to rank the determinants of banking crises over time and across countries," Journal of International Money and Finance, Elsevier, vol. 129(C).
    2. Matilde Cappelletti & Leonardo M. Giuffrida & Leonardo Maria Giuffrida, 2024. "Targeted Bidders in Government Tenders," CESifo Working Paper Series 11142, CESifo.
    3. Resce, Giuliano & Vaquero-Piñeiro, Cristina, 2022. "Predicting agri-food quality across space: A Machine Learning model for the acknowledgment of Geographical Indications," Food Policy, Elsevier, vol. 112(C).
    4. Delogu, Marco & Lagravinese, Raffaele & Paolini, Dimitri & Resce, Giuliano, 2024. "Predicting dropout from higher education: Evidence from Italy," Economic Modelling, Elsevier, vol. 130(C).
    5. Di Stefano, Roberta & Resce, Giuliano, "undated". "The Determinants of Missed Funding: Predicting the Paradox of Increased Need and Reduced Allocation," Economics & Statistics Discussion Papers esdp23092, University of Molise, Department of Economics.
    6. Resce, Giuliano & Vaquero-Piñeiro, Cristina, 2023. "Taste of home: Birth town bias in Geographical Indications," Economics & Statistics Discussion Papers esdp23089, University of Molise, Department of Economics.
    7. Resce, Giuliano, 2022. "The impact of political and non-political officials on the financial management of local governments," Journal of Policy Modeling, Elsevier, vol. 44(5), pages 943-962.
    8. Monturano, Gianluca & Resce, Giuliano & Ventura, Marco, 2022. "Place-Based Policies and the location of economic activity: evidence from the Italian Strategy for Inner areas," Economics & Statistics Discussion Papers esdp22087, University of Molise, Department of Economics.
    9. Caravaggio, Nicola & Resce, Giuliano, 2023. "Enhancing Healthcare Cost Forecasting: A Machine Learning Model for Resource Allocation in Heterogeneous Regions," Economics & Statistics Discussion Papers esdp23090, University of Molise, Department of Economics.
    10. Ambrois, Matteo & Butticè, Vincenzo & Caviggioli, Federico & Cerulli, Giovanni & Croce, Annalisa & De Marco, Antonio & Giordano, Andrea & Resce, Giuliano & Toschi, Laura & Ughetto, Elisa & Zinilli, An, 2023. "Using machine learning to map the European cleantech sector," EIF Working Paper Series 2023/91, European Investment Fund (EIF).
    11. Herrera, Gabriel Paes & Constantino, Michel & Su, Jen-Je & Naranpanawa, Athula, 2023. "The use of ICTs and income distribution in Brazil: A machine learning explanation using SHAP values," Telecommunications Policy, Elsevier, vol. 47(8).
    12. de Blasio, Guido & D'Ignazio, Alessio & Letta, Marco, 2022. "Gotham city. Predicting ‘corrupted’ municipalities with machine learning," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    13. Resce, Giuliano, 2022. "Political and Non-Political Officials in Local Government," Economics & Statistics Discussion Papers esdp22079, University of Molise, Department of Economics.
    14. Mustafa, Andy Ali & Lin, Ching-Yang & Kakinaka, Makoto, 2022. "Detecting market pattern changes: A machine learning approach," Finance Research Letters, Elsevier, vol. 47(PA).
    15. Vincenzo Carrieri & Raffele Lagravinese & Giuliano Resce, 2021. "Predicting vaccine hesitancy from area‐level indicators: A machine learning approach," Health Economics, John Wiley & Sons, Ltd., vol. 30(12), pages 3248-3256, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tölö, Eero, 2020. "Predicting systemic financial crises with recurrent neural networks," Journal of Financial Stability, Elsevier, vol. 49(C).
    2. Lanbiao Liu & Chen Chen & Bo Wang, 2022. "Predicting financial crises with machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 871-910, August.
    3. Casabianca, Elizabeth Jane & Catalano, Michele & Forni, Lorenzo & Giarda, Elena & Passeri, Simone, 2022. "A machine learning approach to rank the determinants of banking crises over time and across countries," Journal of International Money and Finance, Elsevier, vol. 129(C).
    4. repec:zbw:bofrdp:2019_014 is not listed on IDEAS
    5. Tölö, Eero, 2019. "Predicting systemic financial crises with recurrent neural networks," Research Discussion Papers 14/2019, Bank of Finland.
    6. Huynh, Tran & Uebelmesser, Silke, 2024. "Early warning models for systemic banking crises: Can political indicators improve prediction?," European Journal of Political Economy, Elsevier, vol. 81(C).
    7. Resce, Giuliano, 2022. "The impact of political and non-political officials on the financial management of local governments," Journal of Policy Modeling, Elsevier, vol. 44(5), pages 943-962.
    8. Resce, Giuliano, 2022. "Political and Non-Political Officials in Local Government," Economics & Statistics Discussion Papers esdp22079, University of Molise, Department of Economics.
    9. Truong, Chi & Sheen, Jeffrey & Trück, Stefan & Villafuerte, James, 2022. "Early warning systems using dynamic factor models: An application to Asian economies," Journal of Financial Stability, Elsevier, vol. 58(C).
    10. Xianglong Liu, 2023. "Towards Better Banking Crisis Prediction: Could an Automatic Variable Selection Process Improve the Performance?," The Economic Record, The Economic Society of Australia, vol. 99(325), pages 288-312, June.
    11. Tölö, Eero, 2019. "Predicting systemic financial crises with recurrent neural networks," Bank of Finland Research Discussion Papers 14/2019, Bank of Finland.
    12. Hartwig, Benny & Meinerding, Christoph & Schüler, Yves S., 2021. "Identifying indicators of systemic risk," Journal of International Economics, Elsevier, vol. 132(C).
    13. Lang, Jan Hannes & Izzo, Cosimo & Fahr, Stephan & Ruzicka, Josef, 2019. "Anticipating the bust: a new cyclical systemic risk indicator to assess the likelihood and severity of financial crises," Occasional Paper Series 219, European Central Bank.
    14. Wang, Peiwan & Zong, Lu, 2023. "Does machine learning help private sectors to alarm crises? Evidence from China’s currency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    15. Mathonnat, Clément & Minea, Alexandru, 2018. "Financial development and the occurrence of banking crises," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 344-354.
    16. Ponomarenko, Alexey & Tatarintsev, Stas, 2023. "Incorporating financial development indicators into early warning systems," The Journal of Economic Asymmetries, Elsevier, vol. 27(C).
    17. Fendel Ralf & Stremmel Hanno, 2016. "Characteristics of Banking Crises: A Comparative Study with Geographical Contagion," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 236(3), pages 349-388, May.
    18. Resce, Giuliano & Vaquero-Piñeiro, Cristina, 2022. "Predicting agri-food quality across space: A Machine Learning model for the acknowledgment of Geographical Indications," Food Policy, Elsevier, vol. 112(C).
    19. Beutel, Johannes & List, Sophia & von Schweinitz, Gregor, 2019. "Does machine learning help us predict banking crises?," Journal of Financial Stability, Elsevier, vol. 45(C).
    20. Beutel, Johannes & List, Sophia & von Schweinitz, Gregor, 2018. "An evaluation of early warning models for systemic banking crises: Does machine learning improve predictions?," Discussion Papers 48/2018, Deutsche Bundesbank.
    21. Delogu, Marco & Lagravinese, Raffaele & Paolini, Dimitri & Resce, Giuliano, 2024. "Predicting dropout from higher education: Evidence from Italy," Economic Modelling, Elsevier, vol. 130(C).

    More about this item

    Keywords

    Financial distress; Public sector; Machine learning;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • H72 - Public Economics - - State and Local Government; Intergovernmental Relations - - - State and Local Budget and Expenditures
    • H74 - Public Economics - - State and Local Government; Intergovernmental Relations - - - State and Local Borrowing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeborg:v:183:y:2021:i:c:p:681-699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jebo .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.