IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v293y2021ics0306261921003482.html
   My bibliography  Save this article

Occupant behavior modeling methods for resilient building design, operation and policy at urban scale: A review

Author

Listed:
  • Dong, Bing
  • Liu, Yapan
  • Fontenot, Hannah
  • Ouf, Mohamed
  • Osman, Mohamed
  • Chong, Adrian
  • Qin, Shuxu
  • Salim, Flora
  • Xue, Hao
  • Yan, Da
  • Jin, Yuan
  • Han, Mengjie
  • Zhang, Xingxing
  • Azar, Elie
  • Carlucci, Salvatore

Abstract

Traditional occupant behavior modeling has been studied at the building level, and it has become an important factor in the investigation of building energy consumption. However, studies modeling occupant behaviors at the urban scale are still limited. Recent work has revealed that urban big data can enable occupant behavior modeling at the urban scale – however, utilizing the existing data sources and modeling methods in building science to model urban scale occupant behaviors can be quite challenging. Beyond building science, urban scale human behaviors have been studied in several different domains using more advanced modeling methods, including Stochastic Modeling, Neural Networks, Reinforcement Learning, Network Modeling, etc. This paper aims to bridge the gap between data sources and modeling methodologies in building science by borrowing from other domains. Based on a comprehensive review, we 1) identify the modeling challenges of the current approaches in building science, 2) discuss the modeling requirements and data sources both in building science and other domains, 3) review the current modeling methods in building science and other domains, and 4) summarize available performance evaluation metrics for evaluating the modeling methods. Finally, we present future opportunities in building science with enhanced data sources and modeling methods from other domains.

Suggested Citation

  • Dong, Bing & Liu, Yapan & Fontenot, Hannah & Ouf, Mohamed & Osman, Mohamed & Chong, Adrian & Qin, Shuxu & Salim, Flora & Xue, Hao & Yan, Da & Jin, Yuan & Han, Mengjie & Zhang, Xingxing & Azar, Elie & , 2021. "Occupant behavior modeling methods for resilient building design, operation and policy at urban scale: A review," Applied Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:appene:v:293:y:2021:i:c:s0306261921003482
    DOI: 10.1016/j.apenergy.2021.116856
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921003482
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116856?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gang, Wenjie & Augenbroe, Godfried & Wang, Shengwei & Fan, Cheng & Xiao, Fu, 2016. "An uncertainty-based design optimization method for district cooling systems," Energy, Elsevier, vol. 102(C), pages 516-527.
    2. Edward Barbour & Carlos Cerezo Davila & Siddharth Gupta & Christoph Reinhart & Jasleen Kaur & Marta C. González, 2019. "Planning for sustainable cities by estimating building occupancy with mobile phones," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    4. Buffa, Simone & Cozzini, Marco & D’Antoni, Matteo & Baratieri, Marco & Fedrizzi, Roberto, 2019. "5th generation district heating and cooling systems: A review of existing cases in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 504-522.
    5. Tang, Jinjun & Liang, Jian & Zhang, Shen & Huang, Helai & Liu, Fang, 2018. "Inferring driving trajectories based on probabilistic model from large scale taxi GPS data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 566-577.
    6. Fangyu Ding & Quansheng Ge & Dong Jiang & Jingying Fu & Mengmeng Hao, 2017. "Understanding the dynamics of terrorism events with multiple-discipline datasets and machine learning approach," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-11, June.
    7. Calikus, Ece & Nowaczyk, Sławomir & Sant'Anna, Anita & Gadd, Henrik & Werner, Sven, 2019. "A data-driven approach for discovering heat load patterns in district heating," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    8. Eleftheroglou, Nick & Mansouri, Sina Sharif & Loutas, Theodoros & Karvelis, Petros & Georgoulas, George & Nikolakopoulos, George & Zarouchas, Dimitrios, 2019. "Intelligent data-driven prognostic methodologies for the real-time remaining useful life until the end-of-discharge estimation of the Lithium-Polymer batteries of unmanned aerial vehicles with uncerta," Applied Energy, Elsevier, vol. 254(C).
    9. Mariem Fekih & Tom Bellemans & Zbigniew Smoreda & Patrick Bonnel & Angelo Furno & Stéphane Galland, 0. "A data-driven approach for origin–destination matrix construction from cellular network signalling data: a case study of Lyon region (France)," Transportation, Springer, vol. 0, pages 1-32.
    10. Yan Wang & John E. Taylor, 2018. "Coupling sentiment and human mobility in natural disasters: a Twitter-based study of the 2014 South Napa Earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 907-925, June.
    11. Kazas, Georgios & Fabrizio, Enrico & Perino, Marco, 2017. "Energy demand profile generation with detailed time resolution at an urban district scale: A reference building approach and case study," Applied Energy, Elsevier, vol. 193(C), pages 243-262.
    12. Zhang, Qiang & Tian, Zhe & Ma, Zhijun & Li, Genyan & Lu, Yakai & Niu, Jide, 2020. "Development of the heating load prediction model for the residential building of district heating based on model calibration," Energy, Elsevier, vol. 205(C).
    13. Lovati, Marco & Dallapiccola, Mattia & Adami, Jennifer & Bonato, Paolo & Zhang, Xingxing & Moser, David, 2020. "Design of a residential photovoltaic system: the impact of the demand profile and the normative framework," Renewable Energy, Elsevier, vol. 160(C), pages 1458-1467.
    14. Xiao-Yong Yan & Wen-Xu Wang & Zi-You Gao & Ying-Cheng Lai, 2017. "Universal model of individual and population mobility on diverse spatial scales," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    15. Xu, Xiaoqi & Culligan, Patricia J. & Taylor, John E., 2014. "Energy Saving Alignment Strategy: Achieving energy efficiency in urban buildings by matching occupant temperature preferences with a building’s indoor thermal environment," Applied Energy, Elsevier, vol. 123(C), pages 209-219.
    16. Dong, Bing & Li, Zhaoxuan & Taha, Ahmad & Gatsis, Nikolaos, 2018. "Occupancy-based buildings-to-grid integration framework for smart and connected communities," Applied Energy, Elsevier, vol. 219(C), pages 123-137.
    17. Ma, Zhenjun & Yan, Rui & Nord, Natasa, 2017. "A variation focused cluster analysis strategy to identify typical daily heating load profiles of higher education buildings," Energy, Elsevier, vol. 134(C), pages 90-102.
    18. Chong, Adrian & Augenbroe, Godfried & Yan, Da, 2021. "Occupancy data at different spatial resolutions: Building energy performance and model calibration," Applied Energy, Elsevier, vol. 286(C).
    19. Azar, Elie & Nikolopoulou, Christina & Papadopoulos, Sokratis, 2016. "Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling," Applied Energy, Elsevier, vol. 183(C), pages 926-937.
    20. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    21. Yuan, Jianjuan & Zhou, Zhihua & Tang, Huajie & Wang, Chendong & Lu, Shilei & Han, Zhao & Zhang, Ji & Sheng, Ying, 2020. "Identification heat user behavior for improving the accuracy of heating load prediction model based on wireless on-off control system," Energy, Elsevier, vol. 199(C).
    22. D. Brockmann & L. Hufnagel & T. Geisel, 2006. "The scaling laws of human travel," Nature, Nature, vol. 439(7075), pages 462-465, January.
    23. Mohammadi, Neda & Taylor, John E., 2017. "Urban energy flux: Spatiotemporal fluctuations of building energy consumption and human mobility-driven prediction," Applied Energy, Elsevier, vol. 195(C), pages 810-818.
    24. Hu, Maomao & Xiao, Fu, 2020. "Quantifying uncertainty in the aggregate energy flexibility of high-rise residential building clusters considering stochastic occupancy and occupant behavior," Energy, Elsevier, vol. 194(C).
    25. Chernozhukov, Victor & Kasahara, Hiroyuki & Schrimpf, Paul, 2021. "Causal impact of masks, policies, behavior on early covid-19 pandemic in the U.S," Journal of Econometrics, Elsevier, vol. 220(1), pages 23-62.
    26. Luca Pappalardo & Filippo Simini & Salvatore Rinzivillo & Dino Pedreschi & Fosca Giannotti & Albert-László Barabási, 2015. "Returners and explorers dichotomy in human mobility," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    27. Mirakhorli, Amin & Dong, Bing, 2018. "Model predictive control for building loads connected with a residential distribution grid," Applied Energy, Elsevier, vol. 230(C), pages 627-642.
    28. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    29. Noussan, Michel & Jarre, Matteo & Poggio, Alberto, 2017. "Real operation data analysis on district heating load patterns," Energy, Elsevier, vol. 129(C), pages 70-78.
    30. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    31. An, Jingjing & Yan, Da & Hong, Tianzhen & Sun, Kaiyu, 2017. "A novel stochastic modeling method to simulate cooling loads in residential districts," Applied Energy, Elsevier, vol. 206(C), pages 134-149.
    32. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    33. Liu, Yang & Yu, Nanpeng & Wang, Wei & Guan, Xiaohong & Xu, Zhanbo & Dong, Bing & Liu, Ting, 2018. "Coordinating the operations of smart buildings in smart grids," Applied Energy, Elsevier, vol. 228(C), pages 2510-2525.
    34. Milne, Dave & Watling, David, 2019. "Big data and understanding change in the context of planning transport systems," Journal of Transport Geography, Elsevier, vol. 76(C), pages 235-244.
    35. Westermann, Paul & Deb, Chirag & Schlueter, Arno & Evins, Ralph, 2020. "Unsupervised learning of energy signatures to identify the heating system and building type using smart meter data," Applied Energy, Elsevier, vol. 264(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Xiaoxiao & Yu, Hao & Sun, Qiuwen & Tam, Vivian W.Y., 2023. "A critical review of occupant energy consumption behavior in buildings: How we got here, where we are, and where we are headed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Hernández, José L. & de Miguel, Ignacio & Vélez, Fredy & Vasallo, Ali, 2024. "Challenges and opportunities in European smart buildings energy management: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    3. Silvia Perez-Bezos & Anna Figueroa-Lopez & Matxalen Etxebarria-Mallea & Xabat Oregi & Rufino Javier Hernandez-Minguillon, 2022. "Assessment of Social Housing Energy and Thermal Performance in Relation to Occupants’ Behaviour and COVID-19 Influence—A Case Study in the Basque Country, Spain," Sustainability, MDPI, vol. 14(9), pages 1-22, May.
    4. Seppo Sierla & Heikki Ihasalo & Valeriy Vyatkin, 2022. "A Review of Reinforcement Learning Applications to Control of Heating, Ventilation and Air Conditioning Systems," Energies, MDPI, vol. 15(10), pages 1-25, May.
    5. Federico Córdova-González & Eduardo García Meléndez & Montserrat Ferrer Juliá & Daniel Icaza, 2024. "Analysis for the Implementation of Distributed Renewable Energy Generation Systems for Areas of High Vulnerability Due to Hillside Movements: Case Study of Marianza-Cuenca, Ecuador," Energies, MDPI, vol. 17(7), pages 1-30, March.
    6. Prataviera, Enrico & Vivian, Jacopo & Lombardo, Giulia & Zarrella, Angelo, 2022. "Evaluation of the impact of input uncertainty on urban building energy simulations using uncertainty and sensitivity analysis," Applied Energy, Elsevier, vol. 311(C).
    7. Barbara Widera, 2024. "Energy and Carbon Savings in European Households Resulting from Behavioral Changes," Energies, MDPI, vol. 17(16), pages 1-36, August.
    8. Alessia Banfi & Martina Ferrando & Peixian Li & Xing Shi & Francesco Causone, 2024. "Integrating Occupant Behaviour into Urban-Building Energy Modelling: A Review of Current Practices and Challenges," Energies, MDPI, vol. 17(17), pages 1-28, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Yejin & Yoon, Sungmin, 2022. "Holistic Operational Signatures for an energy-efficient district heating substation in buildings," Energy, Elsevier, vol. 250(C).
    2. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    3. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    4. Simona Buscemi & Antonella Plaia, 2020. "Model selection in linear mixed-effect models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 529-575, December.
    5. Jayesh Thaker & Robert Höller, 2022. "A Comparative Study of Time Series Forecasting of Solar Energy Based on Irradiance Classification," Energies, MDPI, vol. 15(8), pages 1-26, April.
    6. Diebold, Francis X. & Shin, Minchul & Zhang, Boyuan, 2023. "On the aggregation of probability assessments: Regularized mixtures of predictive densities for Eurozone inflation and real interest rates," Journal of Econometrics, Elsevier, vol. 237(2).
    7. Luis A. Barboza & Julien Emile-Geay & Bo Li & Wan He, 2019. "Efficient Reconstructions of Common Era Climate via Integrated Nested Laplace Approximations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 535-554, September.
    8. Chen, Ya & Li, Xue & Zhang, Richong & Huang, Zi-Gang & Lai, Ying-Cheng, 2020. "Instantaneous success and influence promotion in cyberspace — how do they occur?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    9. Mogliani, Matteo & Simoni, Anna, 2021. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
    10. Roberto Casarin & Fausto Corradin & Francesco Ravazzolo & Nguyen Domenico Sartore & Wing-Keung Wong, 2020. "A Scoring Rule for Factor and Autoregressive Models Under Misspecification," Advances in Decision Sciences, Asia University, Taiwan, vol. 24(2), pages 66-103, June.
    11. Pengjun Zhao & Hao Wang & Qiyang Liu & Xiao-Yong Yan & Jingzhong Li, 2024. "Unravelling the spatial directionality of urban mobility," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Alexandridis, Antonios K. & Apergis, Iraklis & Panopoulou, Ekaterini & Voukelatos, Nikolaos, 2023. "Equity premium prediction: The role of information from the options market," Journal of Financial Markets, Elsevier, vol. 64(C).
    13. Huang, Zhiren & Wang, Pu & Zhang, Fan & Gao, Jianxi & Schich, Maximilian, 2018. "A mobility network approach to identify and anticipate large crowd gatherings," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 147-170.
    14. David Kaplan, 2021. "On the Quantification of Model Uncertainty: A Bayesian Perspective," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 215-238, March.
    15. Yuqi Chen & Zongyao Sun & Liangwa Cai, 2021. "Population Flow Mechanism Study of Beijing-Tianjin-Hebei Urban Agglomeration from Industrial Space Supply Perspective," Sustainability, MDPI, vol. 13(17), pages 1-15, September.
    16. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    17. Huang, Feihu & Qiao, Shaojie & Peng, Jian & Guo, Bing & Xiong, Xi & Han, Nan, 2019. "A movement model for air passengers based on trip purpose," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 798-808.
    18. Costa, Alexandre Bonnet R. & Ferreira, Pedro Cavalcanti G. & Gaglianone, Wagner P. & Guillén, Osmani Teixeira C. & Issler, João Victor & Lin, Yihao, 2021. "Machine learning and oil price point and density forecasting," Energy Economics, Elsevier, vol. 102(C).
    19. Pierre Pinson & Liyang Han & Jalal Kazempour, 2022. "Regression markets and application to energy forecasting," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 533-573, October.
    20. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:293:y:2021:i:c:s0306261921003482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.