IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v39y2023i1p470-485.html
   My bibliography  Save this article

Decomposing the effects of crowd-wisdom aggregators: The bias–information–noise (BIN) model

Author

Listed:
  • Satopää, Ville A.
  • Salikhov, Marat
  • Tetlock, Philip E.
  • Mellers, Barbara

Abstract

Aggregating predictions from multiple judges often yields more accurate predictions than relying on a single judge, which is known as the wisdom-of-the-crowd effect. However, a wide range of aggregation methods are available, which range from one-size-fits-all techniques, such as simple averaging, prediction markets, and Bayesian aggregators, to customized (supervised) techniques that require past performance data, such as weighted averaging. In this study, we applied a wide range of aggregation methods to subjective probability estimates from geopolitical forecasting tournaments. We used the bias–information–noise (BIN) model to disentangle three mechanisms that allow aggregators to improve the accuracy of predictions: reducing bias and noise, and extracting valid information across forecasters. Simple averaging operates almost entirely by reducing noise, whereas more complex techniques such as prediction markets and Bayesian aggregators exploit all three pathways to allow better signal extraction as well as greater noise and bias reduction. Finally, we explored the utility of a BIN approach for the modular construction of aggregators.

Suggested Citation

  • Satopää, Ville A. & Salikhov, Marat & Tetlock, Philip E. & Mellers, Barbara, 2023. "Decomposing the effects of crowd-wisdom aggregators: The bias–information–noise (BIN) model," International Journal of Forecasting, Elsevier, vol. 39(1), pages 470-485.
  • Handle: RePEc:eee:intfor:v:39:y:2023:i:1:p:470-485
    DOI: 10.1016/j.ijforecast.2021.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207021002168
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2021.12.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen C. Hora & Benjamin R. Fransen & Natasha Hawkins & Irving Susel, 2013. "Median Aggregation of Distribution Functions," Decision Analysis, INFORMS, vol. 10(4), pages 279-291, December.
    2. David V. Budescu & Eva Chen, 2015. "Identifying Expertise to Extract the Wisdom of Crowds," Management Science, INFORMS, vol. 61(2), pages 267-280, February.
    3. Franz Dietrich, 2010. "Bayesian group belief," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 35(4), pages 595-626, October.
    4. Jonathan Baron & Barbara A. Mellers & Philip E. Tetlock & Eric Stone & Lyle H. Ungar, 2014. "Two Reasons to Make Aggregated Probability Forecasts More Extreme," Decision Analysis, INFORMS, vol. 11(2), pages 133-145, June.
    5. Ville A. Satopää & Robin Pemantle & Lyle H. Ungar, 2016. "Modeling Probability Forecasts via Information Diversity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1623-1633, October.
    6. Robert T. Clemen & Robert L. Winkler, 1999. "Combining Probability Distributions From Experts in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 19(2), pages 187-203, April.
    7. Pavel Atanasov & Phillip Rescober & Eric Stone & Samuel A. Swift & Emile Servan-Schreiber & Philip Tetlock & Lyle Ungar & Barbara Mellers, 2017. "Distilling the Wisdom of Crowds: Prediction Markets vs. Prediction Polls," Management Science, INFORMS, vol. 63(3), pages 691-706, March.
    8. Robert L. Winkler & Yael Grushka-Cockayne & Kenneth C. Lichtendahl Jr. & Victor Richmond R. Jose, 2019. "Probability Forecasts and Their Combination: A Research Perspective," Decision Analysis, INFORMS, vol. 16(4), pages 239-260, December.
    9. Satopää, Ville A. & Baron, Jonathan & Foster, Dean P. & Mellers, Barbara A. & Tetlock, Philip E. & Ungar, Lyle H., 2014. "Combining multiple probability predictions using a simple logit model," International Journal of Forecasting, Elsevier, vol. 30(2), pages 344-356.
    10. Daniel Cross & Jaime Ramos & Barbara Mellers & Philip E. Tetlock & David W. Scott, 2018. "Robust forecast aggregation: Fourier L2E regression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(3), pages 259-268, April.
    11. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    12. Spyros Makridakis & Evangelos Spiliotis & Vassilios Assimakopoulos, 2018. "Statistical and Machine Learning forecasting methods: Concerns and ways forward," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-26, March.
    13. Asa B. Palley & Jack B. Soll, 2019. "Extracting the Wisdom of Crowds When Information Is Shared," Management Science, INFORMS, vol. 67(5), pages 2291-2309, May.
    14. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    15. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    16. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satopää, Ville A., 2021. "Improving the wisdom of crowds with analysis of variance of predictions of related outcomes," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1728-1747.
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Patrick Afflerbach & Christopher Dun & Henner Gimpel & Dominik Parak & Johannes Seyfried, 2021. "A Simulation-Based Approach to Understanding the Wisdom of Crowds Phenomenon in Aggregating Expert Judgment," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(4), pages 329-348, August.
    4. Marcellin Martinie & Tom Wilkening & Piers D L Howe, 2020. "Using meta-predictions to identify experts in the crowd when past performance is unknown," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-11, April.
    5. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    6. Robert L. Winkler & Yael Grushka-Cockayne & Kenneth C. Lichtendahl Jr. & Victor Richmond R. Jose, 2019. "Probability Forecasts and Their Combination: A Research Perspective," Decision Analysis, INFORMS, vol. 16(4), pages 239-260, December.
    7. Huck, Nicolas, 2019. "Large data sets and machine learning: Applications to statistical arbitrage," European Journal of Operational Research, Elsevier, vol. 278(1), pages 330-342.
    8. repec:cup:judgdm:v:14:y:2019:i:4:p:395-411 is not listed on IDEAS
    9. Ying Han & David Budescu, 2019. "A universal method for evaluating the quality of aggregators," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 14(4), pages 395-411, July.
    10. Ville A. Satopää & Marat Salikhov & Philip E. Tetlock & Barbara Mellers, 2021. "Bias, Information, Noise: The BIN Model of Forecasting," Management Science, INFORMS, vol. 67(12), pages 7599-7618, December.
    11. Cem Peker, 2023. "Extracting the collective wisdom in probabilistic judgments," Theory and Decision, Springer, vol. 94(3), pages 467-501, April.
    12. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    13. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    14. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    15. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    16. Gary Koop & Dimitris Korobilis, 2023. "Bayesian Dynamic Variable Selection In High Dimensions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
    17. He, Mengxi & Zhang, Yaojie & Wen, Danyan & Wang, Yudong, 2021. "Forecasting crude oil prices: A scaled PCA approach," Energy Economics, Elsevier, vol. 97(C).
    18. Diebold, Francis X. & Shin, Minchul, 2019. "Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.
    19. Jiahan Li & Ilias Tsiakas & Wei Wang, 2015. "Predicting Exchange Rates Out of Sample: Can Economic Fundamentals Beat the Random Walk?," Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 293-341.
    20. Christiansen, Charlotte & Eriksen, Jonas N. & Møller, Stig V., 2019. "Negative house price co-movements and US recessions," Regional Science and Urban Economics, Elsevier, vol. 77(C), pages 382-394.
    21. Anca M. Hanea & Marissa F. McBride & Mark A. Burgman & Bonnie C. Wintle, 2018. "The Value of Performance Weights and Discussion in Aggregated Expert Judgments," Risk Analysis, John Wiley & Sons, vol. 38(9), pages 1781-1794, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:39:y:2023:i:1:p:470-485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.