It's Hard to Be Normal: The Impact of Noise on Structure-agnostic Estimation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
- Kosuke Imai & David A. van Dyk, 2004. "Causal Inference With General Treatment Regimes: Generalizing the Propensity Score," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 854-866, January.
- Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
- Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
- Victor Chernozhukov & Whitney K. Newey & Rahul Singh, 2022.
"Automatic Debiased Machine Learning of Causal and Structural Effects,"
Econometrica, Econometric Society, vol. 90(3), pages 967-1027, May.
- Victor Chernozhukov & Whitney K Newey & Rahul Singh, 2018. "Automatic Debiased Machine Learning of Causal and Structural Effects," Papers 1809.05224, arXiv.org, revised Oct 2022.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
- Newham, Melissa & Valente, Marica, 2024.
"The cost of influence: How gifts to physicians shape prescriptions and drug costs,"
Journal of Health Economics, Elsevier, vol. 95(C).
- Melissa Newham & Marica Valente, 2022. "The Cost of Influence: How Gifts to Physicians Shape Prescriptions and Drug Costs," Papers 2203.01778, arXiv.org, revised Apr 2023.
- Melissa Newham & Marica Valente, 2023. "The Cost of Influence:How Gifts to Physicians Shape Prescriptions and Drug Costs," Working Papers 2023-03, Faculty of Economics and Statistics, Universität Innsbruck.
- Marica Valente & Timm Gries & Lorenzo Trapani, 2023. "Informal employment from migration shocks," Working Papers 2023-09, Faculty of Economics and Statistics, Universität Innsbruck.
- Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
- Sophie Brana & Dalila Chenaf-Nicet & Delphine Lahet, 2023.
"Drivers of cross-border bank claims: The role of foreign-owned banks in emerging countries,"
Working Papers
2023.06, International Network for Economic Research - INFER.
- Sophie Brana & Dalila Chenaf-Nicet & Delphine Lahet, 2023. "Drivers of cross‐border bank claims: The role of foreign‐owned banks in emerging countries," Post-Print hal-04569319, HAL.
- Susan Athey & Guido W. Imbens & Stefan Wager, 2018.
"Approximate residual balancing: debiased inference of average treatment effects in high dimensions,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
- Susan Athey & Guido W. Imbens & Stefan Wager, 2016. "Approximate Residual Balancing: De-Biased Inference of Average Treatment Effects in High Dimensions," Papers 1604.07125, arXiv.org, revised Jan 2018.
- Juan Carlos Escanciano & Telmo P'erez-Izquierdo, 2023. "Automatic Debiased Estimation with Machine Learning-Generated Regressors," Papers 2301.10643, arXiv.org, revised May 2025.
- Heinisch, Katja & Scaramella, Fabio & Schult, Christoph, 2025. "Assumption errors and forecast accuracy: A partial linear instrumental variable and double machine learning approach," IWH Discussion Papers 6/2025, Halle Institute for Economic Research (IWH).
- Elliott Ash & Daniel L. Chen & Sergio Galletta, 2022.
"Measuring Judicial Sentiment: Methods and Application to US Circuit Courts,"
Economica, London School of Economics and Political Science, vol. 89(354), pages 362-376, April.
- Elliott Ash & Daniel L. Chen & Sergio Galletta, 2022. "Measuring Judicial Sentiment: Methods and Application to US Circuit Courts," Post-Print hal-03597819, HAL.
- Julius Schaper, 2025. "Residualised Treatment Intensity and the Estimation of Average Partial Effects," Papers 2502.10301, arXiv.org.
- Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
- Qingliang Fan & Yaqian Wu, 2020. "Endogenous Treatment Effect Estimation with some Invalid and Irrelevant Instruments," Papers 2006.14998, arXiv.org.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023.
"Machine learning advances for time series forecasting,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
- repec:diw:diwwpp:dp1980 is not listed on IDEAS
- Yikun Zhang & Yen-Chi Chen, 2025. "Doubly Robust Inference on Causal Derivative Effects for Continuous Treatments," Papers 2501.06969, arXiv.org, revised Apr 2025.
- Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
- Alexander P. Keil & Katie M. O’Brien, 2024. "Considerations and Targeted Approaches to Identifying Bad Actors in Exposure Mixtures," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 459-481, July.
- T. Tony Cai & Zijian Guo & Yin Xia, 2023. "Statistical inference and large-scale multiple testing for high-dimensional regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(4), pages 1135-1171, December.
- Alena Skolkova, 2023. "Instrumental Variable Estimation with Many Instruments Using Elastic-Net IV," CERGE-EI Working Papers wp759, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
- Valente, Marica, 2023.
"Policy evaluation of waste pricing programs using heterogeneous causal effect estimation,"
Journal of Environmental Economics and Management, Elsevier, vol. 117(C).
- Marica Valente, 2020. "Policy evaluation of waste pricing programs using heterogeneous causal effect estimation," Papers 2010.01105, arXiv.org, revised Nov 2022.
- Marica Valente, 2021. "Policy Evaluation of Waste Pricing Programs Using Heterogeneous Causal Effect Estimation," Discussion Papers of DIW Berlin 1980, DIW Berlin, German Institute for Economic Research.
- Wang, Jia & Cai, Xizhen & Li, Runze, 2021. "Variable selection for partially linear models via Bayesian subset modeling with diffusing prior," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2025-09-01 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.02275. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/arx/papers/2507.02275.html