IDEAS home Printed from https://ideas.repec.org/a/plo/pclm00/0000208.html
   My bibliography  Save this article

Scope 3 emissions: Data quality and machine learning prediction accuracy

Author

Listed:
  • Quyen Nguyen
  • Ivan Diaz-Rainey
  • Adam Kitto
  • Ben I McNeil
  • Nicholas A Pittman
  • Renzhu Zhang

Abstract

Investors’ sophistication on climate risk is increasing and as part of this they require high-quality and comprehensive Scope 3 emissions data. Accordingly, we investigate Scope 3 emissions data divergence (across different providers), composition (which Scope 3 categories are reported) and whether machine-learning models can be used to predict Scope 3 emissions for non-reporting firms. We find considerable divergence in the aggregated Scope 3 emissions values from three of the largest data providers (Bloomberg, Refinitiv Eikon, and ISS). The divergence is largest for ISS, as it replaces reported Scope 3 emissions with estimates from its economic input-output and life cycle assessment modelling. With respect to the composition of Scope 3 emissions, firms generally report incomplete composition, yet they are reporting more categories over time. There is a persistent contrast between relevance and completeness in the composition of Scope 3 emissions across sectors, with low materiality categories such as travel emissions being reported more frequently than typically high materiality ones, such as the use of products and processing of sold products. Finally, machine learning algorithms can improve the prediction accuracy of the aggregated Scope 3 emissions by up to 6% and up to 25% when each category is estimated individually and aggregated into total Scope 3 emissions. However, absolute prediction performance is low even with the best models, with the accuracy of estimates primarily limited by low observations in specific Scope 3 categories. We conclude that investors should be cognizant of Scope 3 emissions data divergence, incomplete reporting of Scope 3 categories, and that predictions for non-reporting firms have high absolute errors even when using machine learning models. For both reported and estimated data, caveat emptor applies.

Suggested Citation

  • Quyen Nguyen & Ivan Diaz-Rainey & Adam Kitto & Ben I McNeil & Nicholas A Pittman & Renzhu Zhang, 2023. "Scope 3 emissions: Data quality and machine learning prediction accuracy," PLOS Climate, Public Library of Science, vol. 2(11), pages 1-31, November.
  • Handle: RePEc:plo:pclm00:0000208
    DOI: 10.1371/journal.pclm.0000208
    as

    Download full text from publisher

    File URL: https://journals.plos.org/climate/article?id=10.1371/journal.pclm.0000208
    Download Restriction: no

    File URL: https://journals.plos.org/climate/article/file?id=10.1371/journal.pclm.0000208&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pclm.0000208?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bernhard Goldhammer & Christian Busse & Timo Busch, 2017. "Estimating Corporate Carbon Footprints with Externally Available Data," Journal of Industrial Ecology, Yale University, vol. 21(5), pages 1165-1179, October.
    2. Lena Klaaßen & Christian Stoll, 2021. "Harmonizing corporate carbon footprints," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Paul A. Griffin & David H. Lont & Estelle Y. Sun, 2017. "The Relevance to Investors of Greenhouse Gas Emission Disclosures," Contemporary Accounting Research, John Wiley & Sons, vol. 34(2), pages 1265-1297, June.
    4. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    5. Thomas Wiedmann, 2009. "Editorial: Carbon Footprint And Input-Output Analysis - An Introduction," Economic Systems Research, Taylor & Francis Journals, vol. 21(3), pages 175-186.
    6. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Quyen & Diaz-Rainey, Ivan & Kuruppuarachchi, Duminda, 2021. "Predicting corporate carbon footprints for climate finance risk analyses: A machine learning approach," Energy Economics, Elsevier, vol. 95(C).
    2. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    3. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank, Research and Statistics Department.
    4. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    5. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    6. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    7. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    8. Jeremi Assael & Thibaut Heurtebize & Laurent Carlier & François Soupé, 2023. "Greenhouse gases emissions: estimating corporate non-reported emissions using interpretable machine learning," Working Papers hal-03905325, HAL.
    9. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    10. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    11. Sophie Brana & Dalila Chenaf-Nicet & Delphine Lahet, 2023. "Drivers of cross-border bank claims: The role of foreign-owned banks in emerging countries," Working Papers 2023.06, International Network for Economic Research - INFER.
    12. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    13. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    14. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    15. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    16. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2025. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(1), pages 57-73, January.
    17. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    18. Jaime Oliver Huidobro & Alberto Antonioni & Francesca Lipari & Ignacio Tamarit, 2022. "Social capital as a network measure provides new insights on economic growth," PLOS ONE, Public Library of Science, vol. 17(8), pages 1-18, August.
    19. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    20. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pclm00:0000208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: climate (email available below). General contact details of provider: https://journals.plos.org/climate .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.