IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i4d10.1007_s00362-023-01492-3.html
   My bibliography  Save this article

ROBOUT: a conditional outlier detection methodology for high-dimensional data

Author

Listed:
  • Matteo Farnè

    (University of Bologna)

  • Angelos Vouldis

    (European Central Bank)

Abstract

This paper presents a methodology, called ROBOUT, to identify outliers conditional on a high-dimensional noisy information set. In particular, ROBOUT is able to identify observations with outlying conditional mean or variance when the dataset contains multivariate outliers in or besides the predictors, multi-collinearity, and a large variable dimension compared to the sample size. ROBOUT entails a pre-processing step, a preliminary robust imputation procedure that prevents anomalous instances from corrupting predictor recovery, a selection stage of the statistically relevant predictors (through cross-validated LASSO-penalized Huber loss regression), the estimation of a robust regression model based on the selected predictors (via MM regression), and a criterion to identify conditional outliers. We conduct a comprehensive simulation study in which the proposed algorithm is tested under a wide range of perturbation scenarios. The combination formed by LASSO-penalized Huber loss and MM regression turns out to be the best in terms of conditional outlier detection under the above described perturbed conditions, also compared to existing integrated methodologies like Sparse Least Trimmed Squares and Robust Least Angle Regression. Furthermore, the proposed methodology is applied to a granular supervisory banking dataset collected by the European Central Bank, in order to model the total assets of euro area banks.

Suggested Citation

  • Matteo Farnè & Angelos Vouldis, 2024. "ROBOUT: a conditional outlier detection methodology for high-dimensional data," Statistical Papers, Springer, vol. 65(4), pages 2489-2525, June.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:4:d:10.1007_s00362-023-01492-3
    DOI: 10.1007/s00362-023-01492-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-023-01492-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-023-01492-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Douglas M. Hawkins, 1980. "Critical Values for Identifying Outliers," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(1), pages 95-96, March.
    2. Bottmer, Lea & Croux, Christophe & Wilms, Ines, 2022. "Sparse regression for large data sets with outliers," European Journal of Operational Research, Elsevier, vol. 297(2), pages 782-794.
    3. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    4. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    5. Anthony C. Atkinson & Aldo Corbellini & Marco Riani, 2017. "Robust Bayesian regression with the forward search: theory and data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 869-886, December.
    6. Smucler, Ezequiel & Yohai, Victor J., 2017. "Robust and sparse estimators for linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 116-130.
    7. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    8. Robert Tibshirani & Jacob Bien & Jerome Friedman & Trevor Hastie & Noah Simon & Jonathan Taylor & Ryan J. Tibshirani, 2012. "Strong rules for discarding predictors in lasso‐type problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(2), pages 245-266, March.
    9. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    10. Khan, Jafar A. & Van Aelst, Stefan & Zamar, Ruben H., 2007. "Robust Linear Model Selection Based on Least Angle Regression," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1289-1299, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    2. Blazquez, Desamparados & Domenech, Josep, 2018. "Big Data sources and methods for social and economic analyses," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 99-113.
    3. Su, Peng & Tarr, Garth & Muller, Samuel & Wang, Suojin, 2024. "CR-Lasso: Robust cellwise regularized sparse regression," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    4. Achim Ahrens & Christian B. Hansen & Mark E. Schaffer, 2020. "lassopack: Model selection and prediction with regularized regression in Stata," Stata Journal, StataCorp LLC, vol. 20(1), pages 176-235, March.
    5. Liao Zhu, 2021. "The Adaptive Multi-Factor Model and the Financial Market," Papers 2107.14410, arXiv.org, revised Aug 2021.
    6. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    7. Jenny W Sun & Jessica M Franklin & Kathryn Rough & Rishi J Desai & Sonia Hernández-Díaz & Krista F Huybrechts & Brian T Bateman, 2020. "Predicting overdose among individuals prescribed opioids using routinely collected healthcare utilization data," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-17, October.
    8. Kepplinger, David, 2023. "Robust variable selection and estimation via adaptive elastic net S-estimators for linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 183(C).
    9. Juan Carlos Laria & Line H. Clemmensen & Bjarne K. Ersbøll & David Delgado-Gómez, 2022. "A Generalized Linear Joint Trained Framework for Semi-Supervised Learning of Sparse Features," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    10. Zeng, Yaohui & Yang, Tianbao & Breheny, Patrick, 2021. "Hybrid safe–strong rules for efficient optimization in lasso-type problems," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    11. Cui, Hailong & Rajagopalan, Sampath & Ward, Amy R., 2020. "Predicting product return volume using machine learning methods," European Journal of Operational Research, Elsevier, vol. 281(3), pages 612-627.
    12. Michoel, Tom, 2016. "Natural coordinate descent algorithm for L1-penalised regression in generalised linear models," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 60-70.
    13. Aaron Chalfin & Benjamin Hansen & Jason Lerner & Lucie Parker, 2019. "Reducing Crime Through Environmental Design: Evidence from a Randomized Experiment of Street Lighting in New York City," NBER Working Papers 25798, National Bureau of Economic Research, Inc.
    14. Andres Algaba & David Ardia & Keven Bluteau & Samuel Borms & Kris Boudt, 2020. "Econometrics Meets Sentiment: An Overview Of Methodology And Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 34(3), pages 512-547, July.
    15. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    16. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    17. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    18. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    19. Gustavo A. Alonso-Silverio & Víctor Francisco-García & Iris P. Guzmán-Guzmán & Elías Ventura-Molina & Antonio Alarcón-Paredes, 2021. "Toward Non-Invasive Estimation of Blood Glucose Concentration: A Comparative Performance," Mathematics, MDPI, vol. 9(20), pages 1-13, October.
    20. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:4:d:10.1007_s00362-023-01492-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.