IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v34y2025i3d10.1007_s11749-025-00978-6.html
   My bibliography  Save this article

Robust penalized estimators for high-dimensional generalized linear models

Author

Listed:
  • Marina Valdora

    (University of Buenos Aires)

  • Claudio Agostinelli

    (University of Trento)

Abstract

Robust estimators for generalized linear models (GLMs) are not easy to develop due to the nature of the distributions involved. Recently, there has been growing interest in robust estimation methods, particularly in contexts involving a potentially large number of explanatory variables. Transformed M-estimators (MT-estimators) provide a natural extension of M-estimation techniques to the GLM framework, offering robust methodologies. We propose a penalized variant of MT-estimators to address high-dimensional data scenarios. Under suitable assumptions, we demonstrate the consistency and asymptotic normality of this novel class of estimators. Our theoretical development focuses on redescending $$\rho $$ ρ -functions and penalization functions that satisfy specific regularity conditions. We present an Iterative re-weighted least-squares algorithm, together with a deterministic initialization procedure, which is crucial since the estimating equations may have multiple solutions. We evaluate the finite-sample performance of this method for Poisson distribution and well-known penalization functions through Monte Carlo simulations that consider various types of contamination, as well as an empirical application using a real dataset.

Suggested Citation

  • Marina Valdora & Claudio Agostinelli, 2025. "Robust penalized estimators for high-dimensional generalized linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 34(3), pages 742-785, September.
  • Handle: RePEc:spr:testjl:v:34:y:2025:i:3:d:10.1007_s11749-025-00978-6
    DOI: 10.1007/s11749-025-00978-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-025-00978-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-025-00978-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:34:y:2025:i:3:d:10.1007_s11749-025-00978-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.