IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v4y2021i3p40-681d626244.html
   My bibliography  Save this article

Robust Variable Selection with Optimality Guarantees for High-Dimensional Logistic Regression

Author

Listed:
  • Luca Insolia

    (Faculty of Sciences, Scuola Normale Superiore, 56126 Pisa, Italy
    Institute of Economics & EMbeDS, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy)

  • Ana Kenney

    (Department of Statistics, Pennsylvania State University, University Park, PA 16802, USA)

  • Martina Calovi

    (Department of Geography, Norwegian University of Science and Technology, 7491 Trondheim, Norway)

  • Francesca Chiaromonte

    (Institute of Economics & EMbeDS, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
    Department of Statistics, Pennsylvania State University, University Park, PA 16802, USA)

Abstract

High-dimensional classification studies have become widespread across various domains. The large dimensionality, coupled with the possible presence of data contamination, motivates the use of robust, sparse estimation methods to improve model interpretability and ensure the majority of observations agree with the underlying parametric model. In this study, we propose a robust and sparse estimator for logistic regression models, which simultaneously tackles the presence of outliers and/or irrelevant features. Specifically, we propose the use of L 0 -constraints and mixed-integer conic programming techniques to solve the underlying double combinatorial problem in a framework that allows one to pursue optimality guarantees. We use our proposal to investigate the main drivers of honey bee ( Apis mellifera ) loss through the annual winter loss survey data collected by the Pennsylvania State Beekeepers Association. Previous studies mainly focused on predictive performance, however our approach produces a more interpretable classification model and provides evidence for several outlying observations within the survey data. We compare our proposal with existing heuristic methods and non-robust procedures, demonstrating its effectiveness. In addition to the application to honey bee loss, we present a simulation study where our proposal outperforms other methods across most performance measures and settings.

Suggested Citation

  • Luca Insolia & Ana Kenney & Martina Calovi & Francesca Chiaromonte, 2021. "Robust Variable Selection with Optimality Guarantees for High-Dimensional Logistic Regression," Stats, MDPI, vol. 4(3), pages 1-17, August.
  • Handle: RePEc:gam:jstats:v:4:y:2021:i:3:p:40-681:d:626244
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/4/3/40/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/4/3/40/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicholas W Calderone, 2012. "Insect Pollinated Crops, Insect Pollinators and US Agriculture: Trend Analysis of Aggregate Data for the Period 1992–2009," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-27, May.
    2. Croux, Christophe & Flandre, Cécile & Haesbroeck, Gentiane, 2002. "The breakdown behavior of the maximum likelihood estimator in the logistic regression model," Statistics & Probability Letters, Elsevier, vol. 60(4), pages 377-386, December.
    3. J.S. Cramer, 2002. "The Origins of Logistic Regression," Tinbergen Institute Discussion Papers 02-119/4, Tinbergen Institute.
    4. She, Yiyuan & Owen, Art B., 2011. "Outlier Detection Using Nonconvex Penalized Regression," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 626-639.
    5. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    6. Rousseeuw, Peter J. & Christmann, Andreas, 2003. "Robustness against separation and outliers in logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 43(3), pages 315-332, July.
    7. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    8. Menjoge, Rajiv S. & Welsch, Roy E., 2010. "A diagnostic method for simultaneous feature selection and outlier identification in linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3181-3193, December.
    9. Hadi, Ali S. & Luceno, Alberto, 1997. "Maximum trimmed likelihood estimators: a unified approach, examples, and algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 25(3), pages 251-272, August.
    10. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    11. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    12. Xiaotong Shen & Wei Pan & Yunzhang Zhu, 2012. "Likelihood-Based Selection and Sharp Parameter Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 223-232, March.
    13. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    14. S. le Cessie & J. C. van Houwelingen, 1992. "Ridge Estimators in Logistic Regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(1), pages 191-201, March.
    15. Croux, Christophe & Haesbroeck, Gentiane, 2003. "Implementing the Bianco and Yohai estimator for logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 273-295, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. She, Yiyuan, 2012. "An iterative algorithm for fitting nonconvex penalized generalized linear models with grouped predictors," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2976-2990.
    2. Zhihua Sun & Yi Liu & Kani Chen & Gang Li, 2022. "Broken adaptive ridge regression for right-censored survival data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 69-91, February.
    3. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    4. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    5. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    6. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    7. Zanhua Yin, 2020. "Variable selection for sparse logistic regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 821-836, October.
    8. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    9. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    10. Dai, Linlin & Chen, Kani & Sun, Zhihua & Liu, Zhenqiu & Li, Gang, 2018. "Broken adaptive ridge regression and its asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 334-351.
    11. Tanin Sirimongkolkasem & Reza Drikvandi, 2019. "On Regularisation Methods for Analysis of High Dimensional Data," Annals of Data Science, Springer, vol. 6(4), pages 737-763, December.
    12. Fang, Xiaolei & Paynabar, Kamran & Gebraeel, Nagi, 2017. "Multistream sensor fusion-based prognostics model for systems with single failure modes," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 322-331.
    13. Siwei Xia & Yuehan Yang & Hu Yang, 2022. "Sparse Laplacian Shrinkage with the Graphical Lasso Estimator for Regression Problems," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 255-277, March.
    14. Daniel, Jeffrey & Horrocks, Julie & Umphrey, Gary J., 2018. "Penalized composite likelihoods for inhomogeneous Gibbs point process models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 104-116.
    15. van Erp, Sara & Oberski, Daniel L. & Mulder, Joris, 2018. "Shrinkage priors for Bayesian penalized regression," OSF Preprints cg8fq, Center for Open Science.
    16. Kwon, Sunghoon & Oh, Seungyoung & Lee, Youngjo, 2016. "The use of random-effect models for high-dimensional variable selection problems," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 401-412.
    17. Sunkyung Kim & Wei Pan & Xiaotong Shen, 2013. "Network-Based Penalized Regression With Application to Genomic Data," Biometrics, The International Biometric Society, vol. 69(3), pages 582-593, September.
    18. Hirose, Kei & Tateishi, Shohei & Konishi, Sadanori, 2013. "Tuning parameter selection in sparse regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 28-40.
    19. Matsui, Hidetoshi, 2014. "Variable and boundary selection for functional data via multiclass logistic regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 176-185.
    20. Chen, Shunjie & Yang, Sijia & Wang, Pei & Xue, Liugen, 2023. "Two-stage penalized algorithms via integrating prior information improve gene selection from omics data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:4:y:2021:i:3:p:40-681:d:626244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.