IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31430-0.html
   My bibliography  Save this article

The genetic heterogeneity and drug resistance mechanisms of relapsed refractory multiple myeloma

Author

Listed:
  • Josh N. Vo

    (University of Michigan
    University of Michigan)

  • Yi-Mi Wu

    (University of Michigan
    University of Michigan)

  • Jeanmarie Mishler

    (University of Michigan)

  • Sarah Hall

    (University of Michigan)

  • Rahul Mannan

    (University of Michigan
    University of Michigan)

  • Lisha Wang

    (University of Michigan)

  • Yu Ning

    (University of Michigan)

  • Jin Zhou

    (University of Michigan)

  • Alexander C. Hopkins

    (University of Michigan)

  • James C. Estill

    (University of Michigan)

  • Wallace K. B. Chan

    (University of Michigan)

  • Jennifer Yesil

    (Multiple Myeloma Research Foundation)

  • Xuhong Cao

    (University of Michigan
    University of Michigan
    University of Michigan)

  • Arvind Rao

    (University of Michigan
    University of Michigan
    University of Michigan
    University of Michigan)

  • Alexander Tsodikov

    (University of Michigan)

  • Moshe Talpaz

    (University of Michigan
    University of Michigan)

  • Craig E. Cole

    (Michigan State University)

  • Jing C. Ye

    (University of Michigan
    University of Michigan)

  • P. Leif Bergsagel

    (Mayo Clinic)

  • Daniel Auclair

    (Multiple Myeloma Research Foundation)

  • Hearn Jay Cho

    (Multiple Myeloma Research Foundation)

  • Dan R. Robinson

    (University of Michigan
    University of Michigan)

  • Arul M. Chinnaiyan

    (University of Michigan
    University of Michigan
    University of Michigan
    University of Michigan)

Abstract

Multiple myeloma is the second most common hematological malignancy. Despite significant advances in treatment, relapse is common and carries a poor prognosis. Thus, it is critical to elucidate the genetic factors contributing to disease progression and drug resistance. Here, we carry out integrative clinical sequencing of 511 relapsed, refractory multiple myeloma (RRMM) patients to define the disease’s molecular alterations landscape. The NF-κB and RAS/MAPK pathways are more commonly altered than previously reported, with a prevalence of 45–65% each. In the RAS/MAPK pathway, there is a long tail of variants associated with the RASopathies. By comparing our RRMM cases with untreated patients, we identify a diverse set of alterations conferring resistance to three main classes of targeted therapy in 22% of our cohort. Activating mutations in IL6ST are also enriched in RRMM. Taken together, our study serves as a resource for future investigations of RRMM biology and potentially informs clinical management.

Suggested Citation

  • Josh N. Vo & Yi-Mi Wu & Jeanmarie Mishler & Sarah Hall & Rahul Mannan & Lisha Wang & Yu Ning & Jin Zhou & Alexander C. Hopkins & James C. Estill & Wallace K. B. Chan & Jennifer Yesil & Xuhong Cao & Ar, 2022. "The genetic heterogeneity and drug resistance mechanisms of relapsed refractory multiple myeloma," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31430-0
    DOI: 10.1038/s41467-022-31430-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31430-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31430-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael S. Lawrence & Petar Stojanov & Paz Polak & Gregory V. Kryukov & Kristian Cibulskis & Andrey Sivachenko & Scott L. Carter & Chip Stewart & Craig H. Mermel & Steven A. Roberts & Adam Kiezun & Pe, 2013. "Mutational heterogeneity in cancer and the search for new cancer-associated genes," Nature, Nature, vol. 499(7457), pages 214-218, July.
    2. Brian A. Walker & Christopher P. Wardell & Alex Murison & Eileen M. Boyle & Dil B. Begum & Nasrin M. Dahir & Paula Z. Proszek & Lorenzo Melchor & Charlotte Pawlyn & Martin F. Kaiser & David C. Johnson, 2015. "APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma," Nature Communications, Nature, vol. 6(1), pages 1-11, November.
    3. Eric S. Fischer & Kerstin Böhm & John R. Lydeard & Haidi Yang & Michael B. Stadler & Simone Cavadini & Jane Nagel & Fabrizio Serluca & Vincent Acker & Gondichatnahalli M. Lingaraju & Ritesh B. Tichkul, 2014. "Structure of the DDB1–CRBN E3 ubiquitin ligase in complex with thalidomide," Nature, Nature, vol. 512(7512), pages 49-53, August.
    4. Michael S. Lawrence & Petar Stojanov & Craig H. Mermel & James T. Robinson & Levi A. Garraway & Todd R. Golub & Matthew Meyerson & Stacey B. Gabriel & Eric S. Lander & Gad Getz, 2014. "Discovery and saturation analysis of cancer genes across 21 tumour types," Nature, Nature, vol. 505(7484), pages 495-501, January.
    5. Zhan Yao & Rona Yaeger & Vanessa S. Rodrik-Outmezguine & Anthony Tao & Neilawattie M. Torres & Matthew T. Chang & Matthias Drosten & Huiyong Zhao & Fabiola Cecchi & Todd Hembrough & Judith Michels & H, 2017. "Tumours with class 3 BRAF mutants are sensitive to the inhibition of activated RAS," Nature, Nature, vol. 548(7666), pages 234-238, August.
    6. Dan R. Robinson & Yi-Mi Wu & Robert J. Lonigro & Pankaj Vats & Erin Cobain & Jessica Everett & Xuhong Cao & Erica Rabban & Chandan Kumar-Sinha & Victoria Raymond & Scott Schuetze & Ajjai Alva & Javed , 2017. "Integrative clinical genomics of metastatic cancer," Nature, Nature, vol. 548(7667), pages 297-303, August.
    7. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    8. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    3. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    4. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    5. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    6. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    7. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    8. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    9. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    10. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    11. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    12. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    13. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.
    14. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    15. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    16. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    17. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    18. Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.
    19. Jung, Yoon Mo & Whang, Joyce Jiyoung & Yun, Sangwoon, 2020. "Sparse probabilistic K-means," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    20. Changrong Yan & Dixin Zhang, 2013. "Sparse dimension reduction for survival data," Computational Statistics, Springer, vol. 28(4), pages 1835-1852, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31430-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.