IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v36y2025i1ne2852.html
   My bibliography  Save this article

High dimensional variable selection through group Lasso for multiple function‐on‐function linear regression: A case study in PM10 monitoring

Author

Listed:
  • Adelia Evangelista
  • Christian Acal
  • Ana M. Aguilera
  • Annalina Sarra
  • Tonio Di Battista
  • Sergio Palermi

Abstract

Analyzing the effect of chemical and local meteorological variables over the behaviour in PM10$$ {\mathrm{PM}}_{10} $$ concentrations in the Abruzzo region (Italy), with the objective of forecasting and controlling air quality, motivates the current work. Given that the available data are curves that represent the day‐to‐day variations, a multiple function‐on‐function linear regression (MFFLR) model is considered. By assuming the Karhunen‐Loève expansion, MFFLR model can be reduced to a classical linear regression model for each principal component of the functional response in terms of all principal components (PCs) of the functional predictors. In this sense, a regularization approach for functional principal component regression based on the merge of functional data analysis with group Lasso is proposed. This novel methodology allows to estimate the model and, simultaneously, select those relevant functional predictors with the functional response, where each functional independent variable is represented by a group of input variables derived by the PCs.

Suggested Citation

  • Adelia Evangelista & Christian Acal & Ana M. Aguilera & Annalina Sarra & Tonio Di Battista & Sergio Palermi, 2025. "High dimensional variable selection through group Lasso for multiple function‐on‐function linear regression: A case study in PM10 monitoring," Environmetrics, John Wiley & Sons, Ltd., vol. 36(1), January.
  • Handle: RePEc:wly:envmet:v:36:y:2025:i:1:n:e2852
    DOI: 10.1002/env.2852
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2852
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2852?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Febrero-Bande, Manuel & de la Fuente, Manuel Oviedo, 2012. "Statistical Computing in Functional Data Analysis: The R Package fda.usc," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i04).
    2. Ruiyan Luo & Xin Qi, 2017. "Function-on-Function Linear Regression by Signal Compression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 690-705, April.
    3. Aneiros, Germán & Vieu, Philippe, 2014. "Variable selection in infinite-dimensional problems," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 12-20.
    4. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, Decembrie.
    5. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    6. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    7. Javier Martínez Torres & Jorge Pastor Pérez & Joaquín Sancho Val & Aonghus McNabola & Miguel Martínez Comesaña & John Gallagher, 2020. "A Functional Data Analysis Approach for the Detection of Air Pollution Episodes and Outliers: A Case Study in Dublin, Ireland," Mathematics, MDPI, vol. 8(2), pages 1-19, February.
    8. Mark J. Meyer & Brent A. Coull & Francesco Versace & Paul Cinciripini & Jeffrey S. Morris, 2015. "Bayesian function‐on‐function regression for multilevel functional data," Biometrics, The International Biometric Society, vol. 71(3), pages 563-574, September.
    9. Andrada Ivanescu & Ana-Maria Staicu & Fabian Scheipl & Sonja Greven, 2015. "Penalized function-on-function regression," Computational Statistics, Springer, vol. 30(2), pages 539-568, June.
    10. Dauxois, J. & Pousse, A. & Romain, Y., 1982. "Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference," Journal of Multivariate Analysis, Elsevier, vol. 12(1), pages 136-154, March.
    11. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    12. Qi, Xin & Luo, Ruiyan, 2018. "Function-on-function regression with thousands of predictive curves," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 51-66.
    13. Francisco Ocaña & Ana Aguilera & Manuel Escabias, 2007. "Computational considerations in functional principal component analysis," Computational Statistics, Springer, vol. 22(3), pages 449-465, September.
    14. Matsui, Hidetoshi & Konishi, Sadanori, 2011. "Variable selection for functional regression models via the L1 regularization," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3304-3310, December.
    15. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    16. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    17. Fabio Centofanti & Antonio Lepore & Alessandra Menafoglio & Biagio Palumbo & Simone Vantini, 2023. "Adaptive smoothing spline estimator for the function-on-function linear regression model," Computational Statistics, Springer, vol. 38(1), pages 191-216, March.
    18. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Audrino, Francesco & Tetereva, Anastasija, 2019. "Sentiment spillover effects for US and European companies," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 542-567.
    2. Laura Freijeiro‐González & Manuel Febrero‐Bande & Wenceslao González‐Manteiga, 2022. "A Critical Review of LASSO and Its Derivatives for Variable Selection Under Dependence Among Covariates," International Statistical Review, International Statistical Institute, vol. 90(1), pages 118-145, April.
    3. Aneiros, Germán & Novo, Silvia & Vieu, Philippe, 2022. "Variable selection in functional regression models: A review," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    4. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    5. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
    6. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    7. Takumi Saegusa & Tianzhou Ma & Gang Li & Ying Qing Chen & Mei-Ling Ting Lee, 2020. "Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 376-398, December.
    8. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    9. Yuexuan Wu & Chao Huang & Anuj Srivastava, 2024. "Shape-based functional data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(1), pages 1-47, March.
    10. Korobilis, Dimitris, 2013. "Hierarchical shrinkage priors for dynamic regressions with many predictors," International Journal of Forecasting, Elsevier, vol. 29(1), pages 43-59.
    11. Xiaoping Liu & Xiao-Bai Li & Sumit Sarkar, 2023. "Cost-Restricted Feature Selection for Data Acquisition," Management Science, INFORMS, vol. 69(7), pages 3976-3992, July.
    12. Kwon, Sunghoon & Oh, Seungyoung & Lee, Youngjo, 2016. "The use of random-effect models for high-dimensional variable selection problems," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 401-412.
    13. Ismail Shah & Hina Naz & Sajid Ali & Amani Almohaimeed & Showkat Ahmad Lone, 2023. "A New Quantile-Based Approach for LASSO Estimation," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    14. Howard D. Bondell & Brian J. Reich, 2009. "Simultaneous Factor Selection and Collapsing Levels in ANOVA," Biometrics, The International Biometric Society, vol. 65(1), pages 169-177, March.
    15. Howard D. Bondell & Brian J. Reich, 2012. "Consistent High-Dimensional Bayesian Variable Selection via Penalized Credible Regions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1610-1624, December.
    16. Shanshan Qin & Hao Ding & Yuehua Wu & Feng Liu, 2021. "High-dimensional sign-constrained feature selection and grouping," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 787-819, August.
    17. Jiang, He & Luo, Shihua & Dong, Yao, 2021. "Simultaneous feature selection and clustering based on square root optimization," European Journal of Operational Research, Elsevier, vol. 289(1), pages 214-231.
    18. Majnu John & Sujit Vettam & Yihren Wu, 2025. "A novel nonconvex, smooth-at-origin penalty for statistical learning," Computational Statistics, Springer, vol. 40(3), pages 1397-1422, March.
    19. Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
    20. Sandra Stankiewicz, 2015. "Forecasting Euro Area Macroeconomic Variables with Bayesian Adaptive Elastic Net," Working Paper Series of the Department of Economics, University of Konstanz 2015-12, Department of Economics, University of Konstanz.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:36:y:2025:i:1:n:e2852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.