IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i6p1293-d1680984.html
   My bibliography  Save this article

Spatiotemporal Assessment of Desertification in Wadi Fatimah

Author

Listed:
  • Abdullah F. Alqurashi

    (Geography Department, Umm Al-Qura University, Makkah 21955, Saudi Arabia)

  • Omar A. Alharbi

    (Geography Department, Umm Al-Qura University, Makkah 21955, Saudi Arabia)

Abstract

Over the past four decades, Wadi Fatimah in western Saudi Arabia has undergone significant environmental changes that have contributed to desertification. High-resolution spatial and temporal analyses are essential for monitoring the extent of desertification and understanding its driving factors. This study aimed to assess the spatial distribution of desertification in Wadi Fatimah using satellite and climate data. Landsat imagery from 1984 to 2022 was employed to derive land surface temperature (LST) and assess vegetation trends using the Normalized Difference Vegetation Index (NDVI). Climate variables, including precipitation and evapotranspiration (ET), were sourced from the gridded TerraClimate dataset (1980–2022). LST estimates were validated using MOD11A2 products (2001–2022), while TerraClimate precipitation data were evaluated against observations from four local rain gauge stations: Wadi Muharam, Al-Seal Al-Kabeer, Makkah, and Baharah Al-Jadeedah. A Desertification Index (DI) was developed based on four variables: NDVI, LST, precipitation, and ET. Five regression models—ridge, lasso, elastic net, polynomial regression (degree 2), and random forest regression—were applied to evaluate the predictive capacity of these variables in explaining desertification dynamics. Among these, Random Forest and Polynomial Regression demonstrated superior predictive performance. The classification accuracy of the desertification map showed high overall accuracy and a strong Kappa coefficient. Results revealed extensive land degradation in the central and lower sub-basins of Wadi Fatimah, driven by both climatic stressors and anthropogenic pressures. LST exhibited a clear upward trend between 1984 and 2022, especially in the lower sub-basin. Precipitation and ET analysis confirmed the region’s arid climate, characterized by limited rainfall and high ET, which exacerbate vegetation stress and soil moisture deficits. Validation of LST with MOD11A2 data showed reasonable agreement, with RMSE values ranging from 2 °C to 6 °C and strong correlation coefficients across most years. Precipitation validation revealed low correlation at Al-Seal Al-Kabeer, moderate at Baharah Al-Jadeedah, and high correlations at Wadi Muharam and Makkah stations. These results highlight the importance of developing robust validation methods for gridded climate datasets, especially in data-sparse regions. Promoting sustainable land management and implementing targeted interventions are vital to mitigating desertification and preserving the environmental integrity of Wadi Fatimah.

Suggested Citation

  • Abdullah F. Alqurashi & Omar A. Alharbi, 2025. "Spatiotemporal Assessment of Desertification in Wadi Fatimah," Land, MDPI, vol. 14(6), pages 1-33, June.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:6:p:1293-:d:1680984
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/6/1293/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/6/1293/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdullah F. Alqurashi, 2021. "Quantification of Urban Patterns and Processes through Space and Time Using Remote Sensing Data: A Comparative Study between Three Saudi Arabian Cities," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
    2. Samia S. Hasan & Omar A. Alharbi & Abdullah F. Alqurashi & Amr S. Fahil, 2024. "Assessment of Desertification Dynamics in Arid Coastal Areas by Integrating Remote Sensing Data and Statistical Techniques," Sustainability, MDPI, vol. 16(11), pages 1-19, May.
    3. Arslan Berdyyev & Yousef A. Al-Masnay & Mukhiddin Juliev & Jilili Abuduwaili, 2025. "Bibliometric Analysis of Desertification in the Period from 1974 to 2024 Based on the Scopus Database," Land, MDPI, vol. 14(3), pages 1-28, February.
    4. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    5. Subhanil Guha & Himanshu Govil, 2021. "An assessment on the relationship between land surface temperature and normalized difference vegetation index," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1944-1963, February.
    6. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    3. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    4. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    5. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    6. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    7. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    8. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2025. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(1), pages 57-73, January.
    9. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    10. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    11. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    12. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    13. Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.
    14. Jung, Yoon Mo & Whang, Joyce Jiyoung & Yun, Sangwoon, 2020. "Sparse probabilistic K-means," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    15. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    16. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    17. Joseph, Andreas & Potjagailo, Galina & Chakraborty, Chiranjit & Kapetanios, George, 2024. "Forecasting UK inflation bottom up," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1521-1538.
    18. Soave, David & Lawless, Jerald F., 2023. "Regularized regression for two phase failure time studies," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    19. Moharil Janhavi & May Paul & Gaile Daniel P. & Blair Rachael Hageman, 2016. "Belief propagation in genotype-phenotype networks," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(1), pages 39-53, March.
    20. Won Hee Lee, 2023. "The Choice of Machine Learning Algorithms Impacts the Association between Brain-Predicted Age Difference and Cognitive Function," Mathematics, MDPI, vol. 11(5), pages 1-15, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:6:p:1293-:d:1680984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.