IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/96408.html
   My bibliography  Save this paper

Nowcasting and forecasting US recessions: Evidence from the Super Learner

Author

Listed:
  • Maas, Benedikt

Abstract

This paper introduces the Super Learner to nowcast and forecast the probability of a US economy recession in the current quarter and future quarters. The Super Learner is an algorithm that selects an optimal weighted average from several machine learning algorithms. In this paper, elastic net, random forests, gradient boosting machines and kernel support vector machines are used as underlying base learners of the Super Learner, which is trained with real-time vintages of the FRED-MD database as input data. The Super Learner’s ability to categorise future time periods into recessions versus expansions is compared with eight different alternatives based on probit models. The relative model performance is evaluated based on receiver operating characteristic (ROC) curves. In summary, the Super Learner predicts a recession very reliably across all forecast horizons, although it is defeated by different individual benchmark models on each horizon.

Suggested Citation

  • Maas, Benedikt, 2019. "Nowcasting and forecasting US recessions: Evidence from the Super Learner," MPRA Paper 96408, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:96408
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/96408/1/MPRA_paper_96408.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    2. Mr. Andrew J Tiffin, 2016. "Seeing in the Dark: A Machine-Learning Approach to Nowcasting in Lebanon," IMF Working Papers 2016/056, International Monetary Fund.
    3. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    4. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    5. Jin-Kyu Jung & Manasa Patnam & Anna Ter-Martirosyan, 2018. "An Algorithmic Crystal Ball: Forecasts-based on Machine Learning," IMF Working Papers 2018/230, International Monetary Fund.
    6. Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
    7. Christian Pierdzioch & Monique B. Reid & Rangan Gupta, 2018. "On the directional accuracy of inflation forecasts: evidence from South African survey data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(5), pages 884-900, April.
    8. Jordà, Òscar & Taylor, Alan M., 2012. "The carry trade and fundamentals: Nothing to fear but FEER itself," Journal of International Economics, Elsevier, vol. 88(1), pages 74-90.
    9. Liu, Weiling & Moench, Emanuel, 2016. "What predicts US recessions?," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1138-1150.
    10. Estrella, Arturo & Hardouvelis, Gikas A, 1991. "The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    11. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
    12. Periklis Gogas & Theophilos Papadimitriou & Maria Matthaiou & Efthymia Chrysanthidou, 2015. "Yield Curve and Recession Forecasting in a Machine Learning Framework," Computational Economics, Springer;Society for Computational Economics, vol. 45(4), pages 635-645, April.
    13. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    14. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    15. Khandani, Amir E. & Kim, Adlar J. & Lo, Andrew W., 2010. "Consumer credit-risk models via machine-learning algorithms," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2767-2787, November.
    16. Domenico Giannone & Lucrezia Reichlin & David Small, 2008. "Nowcasting: the real time informational content of macroeconomic data releases," ULB Institutional Repository 2013/6409, ULB -- Universite Libre de Bruxelles.
    17. Loermann, Julius & Maas, Benedikt, 2019. "Nowcasting US GDP with artificial neural networks," MPRA Paper 95459, University Library of Munich, Germany.
    18. Arturo Estrella & Frederic S. Mishkin, 1996. "The yield curve as a predictor of U.S. recessions," Current Issues in Economics and Finance, Federal Reserve Bank of New York, vol. 2(Jun).
    19. Òscar Jordà & Alan M. Taylor, 2011. "Performance Evaluation of Zero Net-Investment Strategies," NBER Working Papers 17150, National Bureau of Economic Research, Inc.
    20. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    21. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    22. Freund, Yoav & Schapire, Robert E., 1999. "Adaptive Game Playing Using Multiplicative Weights," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 79-103, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aastveit, Knut Are & Anundsen, André K. & Herstad, Eyo I., 2019. "Residential investment and recession predictability," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1790-1799.
    2. Liu, Weiling & Moench, Emanuel, 2016. "What predicts US recessions?," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1138-1150.
    3. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    4. Juan Tenorio & Wilder Perez, 2024. "Monthly GDP nowcasting with Machine Learning and Unstructured Data," Papers 2402.04165, arXiv.org.
    5. Jaehyuk Choi & Desheng Ge & Kyu Ho Kang & Sungbin Sohn, 2023. "Yield spread selection in predicting recession probabilities," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1772-1785, November.
    6. Sun, Jiandong & Feng, Shuaizhang & Hu, Yingyao, 2021. "Misclassification errors in labor force statuses and the early identification of economic recessions," Journal of Asian Economics, Elsevier, vol. 75(C).
    7. Feng, Shuaizhang & Sun, Jiandong, 2020. "Misclassification-errors-adjusted Sahm Rule for Early Identification of Economic Recession," GLO Discussion Paper Series 523, Global Labor Organization (GLO).
    8. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    9. Feng, Shuaizhang & Sun, Jiandong, 2020. "Misclassification-Errors-Adjusted Sahm Rule for Early Identification of Economic Recession," IZA Discussion Papers 13168, Institute of Labor Economics (IZA).
    10. Jaehyuk Choi & Desheng Ge & Kyu Ho Kang & Sungbin Sohn, 2021. "Yield Spread Selection in Predicting Recession Probabilities: A Machine Learning Approach," Papers 2101.09394, arXiv.org, revised Jan 2022.
    11. Bennedsen, Mikkel & Hillebrand, Eric & Koopman, Siem Jan, 2021. "Modeling, forecasting, and nowcasting U.S. CO2 emissions using many macroeconomic predictors," Energy Economics, Elsevier, vol. 96(C).
    12. Vrontos, Spyridon D. & Galakis, John & Vrontos, Ioannis D., 2021. "Modeling and predicting U.S. recessions using machine learning techniques," International Journal of Forecasting, Elsevier, vol. 37(2), pages 647-671.
    13. Paolo Andreini & Cosimo Izzo & Giovanni Ricco, 2020. "Deep Dynamic Factor Models," Papers 2007.11887, arXiv.org, revised May 2023.
    14. Christophe Piette, 2016. "Predicting Belgium’s GDP using targeted bridge models," Working Paper Research 290, National Bank of Belgium.
    15. Shuaizhang Feng & Jiandong Sun, 2020. "Misclassification-Errors-Adjusted Sahm Rule for Early Identification of Economic Recession," Working Papers 2020-029, Human Capital and Economic Opportunity Working Group.
    16. James Chapman & Ajit Desai, 2021. "Using Payments Data to Nowcast Macroeconomic Variables During the Onset of COVID-19," Staff Working Papers 21-2, Bank of Canada.
    17. Paolo Fornaro & Henri Luomaranta, 2020. "Nowcasting Finnish real economic activity: a machine learning approach," Empirical Economics, Springer, vol. 58(1), pages 55-71, January.
    18. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
    19. Samuel N. Cohen & Silvia Lui & Will Malpass & Giulia Mantoan & Lars Nesheim & 'Aureo de Paula & Andrew Reeves & Craig Scott & Emma Small & Lingyi Yang, 2023. "Nowcasting with signature methods," Papers 2305.10256, arXiv.org.
    20. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.

    More about this item

    Keywords

    Machine Learning; Nowcasting; Forecasting; Business cycle analysis;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:96408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.