IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v16y2017i5-6p349-365n4.html
   My bibliography  Save this article

Multivariate association between single-nucleotide polymorphisms in Alzgene linkage regions and structural changes in the brain: discovery, refinement and validation

Author

Listed:
  • Szefer Elena
  • Graham Jinko

    (Department of Statistics and Actuarial Science, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada)

  • Lu Donghuan
  • Beg Mirza Faisal

    (School of Engineering Science, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada)

  • Nathoo Farouk

    (Department of Mathematics and Statistics, University of Victoria, PO Box 1700 STN CSCVictoria, BC V8W 2Y2, Canada)

Abstract

Using publicly-available data from the Alzheimer’s Disease Neuroimaging Initiative, we investigate the joint association between single-nucleotide polymorphisms (SNPs) in previously established linkage regions for Alzheimer’s disease (AD) and rates of decline in brain structure. In an initial, discovery stage of analysis, we applied a weighted RV test to assess the association between 75,845 SNPs in the Alzgene linkage regions and rates of change in structural MRI measurements for 56 brain regions affected by AD, in 632 subjects. After confirming association, we selected refined lists of 1694 and 22 SNPs via a bootstrap-enhanced sparse canonical correlation analysis. In a final, validation stage, we confirmed association between the refined list of 1694 SNPs and the imaging phenotypes in an independent data set. Genes corresponding to priority SNPs having the highest contribution in the validation data have previously been implicated or hypothesized to be implicated in AD, including GCLC, IDE, and STAMBP1andFAS. Though the effect sizes of the 1694 SNPs in the priority set are likely small, further investigation within this set may advance understanding of the missing heritability in AD. Our analysis addresses challenges in current imaging-genetics studies such as biased sampling designs and high-dimensional data with low association signal.

Suggested Citation

  • Szefer Elena & Graham Jinko & Lu Donghuan & Beg Mirza Faisal & Nathoo Farouk, 2017. "Multivariate association between single-nucleotide polymorphisms in Alzgene linkage regions and structural changes in the brain: discovery, refinement and validation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(5-6), pages 349-365, December.
  • Handle: RePEc:bpj:sagmbi:v:16:y:2017:i:5-6:p:349-365:n:4
    DOI: 10.1515/sagmb-2016-0077
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/sagmb-2016-0077
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/sagmb-2016-0077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    2. Clive J Hoggart & John C Whittaker & Maria De Iorio & David J Balding, 2008. "Simultaneous Analysis of All SNPs in Genome-Wide and Re-Sequencing Association Studies," PLOS Genetics, Public Library of Science, vol. 4(7), pages 1-8, July.
    3. Parkhomenko Elena & Tritchler David & Beyene Joseph, 2009. "Sparse Canonical Correlation Analysis with Application to Genomic Data Integration," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-34, January.
    4. Chalise, Prabhakar & Fridley, Brooke L., 2012. "Comparison of penalty functions for sparse canonical correlation analysis," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 245-254.
    5. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    6. Marek Omelka & Šárka Hudecová, 2013. "A comparison of the Mantel test with a generalised distance covariance test," Environmetrics, John Wiley & Sons, Ltd., vol. 24(7), pages 449-460, November.
    7. Lykou, Anastasia & Whittaker, Joe, 2010. "Sparse CCA using a Lasso with positivity constraints," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3144-3157, December.
    8. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitry Kobak & Yves Bernaerts & Marissa A. Weis & Federico Scala & Andreas S. Tolias & Philipp Berens, 2021. "Sparse reduced‐rank regression for exploratory visualisation of paired multivariate data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 980-1000, August.
    2. Andreas Floren & Tobias Müller, 2023. "Using a Machine Learning Approach to Classify the Degree of Forest Management," Sustainability, MDPI, vol. 15(16), pages 1-14, August.
    3. Chalise, Prabhakar & Fridley, Brooke L., 2012. "Comparison of penalty functions for sparse canonical correlation analysis," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 245-254.
    4. Jacob Bergstedt & Sadoune Ait Kaci Azzou & Kristin Tsuo & Anthony Jaquaniello & Alejandra Urrutia & Maxime Rotival & David T. S. Lin & Julia L. MacIsaac & Michael S. Kobor & Matthew L. Albert & Darrag, 2022. "The immune factors driving DNA methylation variation in human blood," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    5. Zachary Garfield & Ryan Schacht & Emily Post & Dominique Ingram & Andrea Uehling & Shane Macfarlan, 2021. "The content and structure of reputation domains across human societies: a view from the evolutionary social sciences," Post-Print hal-03368986, HAL.
    6. Gao Wang & Abhishek Sarkar & Peter Carbonetto & Matthew Stephens, 2020. "A simple new approach to variable selection in regression, with application to genetic fine mapping," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1273-1300, December.
    7. Heather E Wheeler & Kaanan P Shah & Jonathon Brenner & Tzintzuni Garcia & Keston Aquino-Michaels & GTEx Consortium & Nancy J Cox & Dan L Nicolae & Hae Kyung Im, 2016. "Survey of the Heritability and Sparse Architecture of Gene Expression Traits across Human Tissues," PLOS Genetics, Public Library of Science, vol. 12(11), pages 1-23, November.
    8. W. Holmes Finch, 2018. "Modeling High Dimensional Multilevel Data using the Lasso Estimator: A Simulation Study," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 7(1), pages 1-3.
    9. Vinny Davies & Richard Reeve & William T. Harvey & Francois F. Maree & Dirk Husmeier, 2017. "A sparse hierarchical Bayesian model for detecting relevant antigenic sites in virus evolution," Computational Statistics, Springer, vol. 32(3), pages 803-843, September.
    10. Lykou, Anastasia & Whittaker, Joe, 2010. "Sparse CCA using a Lasso with positivity constraints," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3144-3157, December.
    11. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    12. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    13. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    14. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    15. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    16. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    17. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    18. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    19. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    20. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:16:y:2017:i:5-6:p:349-365:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.