IDEAS home Printed from https://ideas.repec.org/a/wly/emetrp/v86y2018i4p1479-1512.html

A One Covariate at a Time, Multiple Testing Approach to Variable Selection in High‐Dimensional Linear Regression Models

Author

Listed:
  • A. Chudik
  • G. Kapetanios
  • M. Hashem Pesaran

Abstract

This paper provides an alternative approach to penalized regression for model selection in the context of high‐dimensional linear regressions where the number of covariates is large, often much larger than the number of available observations. We consider the statistical significance of individual covariates one at a time, while taking full account of the multiple testing nature of the inferential problem involved. We refer to the proposed method as One Covariate at a Time Multiple Testing (OCMT) procedure, and use ideas from the multiple testing literature to control the probability of selecting the approximating model, the false positive rate, and the false discovery rate. OCMT is easy to interpret, relates to classical statistical analysis, is valid under general assumptions, is faster to compute, and performs well in small samples. The usefulness of OCMT is also illustrated by an empirical application to forecasting U.S. output growth and inflation.

Suggested Citation

  • A. Chudik & G. Kapetanios & M. Hashem Pesaran, 2018. "A One Covariate at a Time, Multiple Testing Approach to Variable Selection in High‐Dimensional Linear Regression Models," Econometrica, Econometric Society, vol. 86(4), pages 1479-1512, July.
  • Handle: RePEc:wly:emetrp:v:86:y:2018:i:4:p:1479-1512
    DOI: 10.3982/ECTA14176
    as

    Download full text from publisher

    File URL: https://doi.org/10.3982/ECTA14176
    Download Restriction: no

    File URL: https://libkey.io/10.3982/ECTA14176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    More about this item

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    Lists

    This item is featured on the following reading lists, Wikipedia, or ReplicationWiki pages:
    1. A One Covariate at a Time, Multiple Testing Approach to Variable Selection in High-Dimensional Linear Regression Models (ECTA 2018) in ReplicationWiki

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emetrp:v:86:y:2018:i:4:p:1479-1512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.