Author
Listed:
- Mohammed Alsobay
- David G. Rand
- Duncan J. Watts
- Abdullah Almaatouq
Abstract
Punishment as a mechanism for promoting cooperation has been studied extensively for more than two decades, but its effectiveness remains a matter of dispute. Here, we examine how punishment's impact varies across cooperative settings through a large-scale integrative experiment. We vary 14 parameters that characterize public goods games, sampling 360 experimental conditions and collecting 147,618 decisions from 7,100 participants. Our results reveal striking heterogeneity in punishment effectiveness: while punishment consistently increases contributions, its impact on payoffs (i.e., efficiency) ranges from dramatically enhancing welfare (up to 43% improvement) to severely undermining it (up to 44% reduction) depending on the cooperative context. To characterize these patterns, we developed models that outperformed human forecasters (laypeople and domain experts) in predicting punishment outcomes in new experiments. Communication emerged as the most predictive feature, followed by contribution framing (opt-out vs. opt-in), contribution type (variable vs. all-or-nothing), game length (number of rounds), peer outcome visibility (whether participants can see others' earnings), and the availability of a reward mechanism. Interestingly, however, most of these features interact to influence punishment effectiveness rather than operating independently. For example, the extent to which longer games increase the effectiveness of punishment depends on whether groups can communicate. Together, our results refocus the debate over punishment from whether or not it "works" to the specific conditions under which it does and does not work. More broadly, our study demonstrates how integrative experiments can be combined with machine learning to uncover generalizable patterns, potentially involving interactions between multiple features, and help generate novel explanations in complex social phenomena.
Suggested Citation
Mohammed Alsobay & David G. Rand & Duncan J. Watts & Abdullah Almaatouq, 2025.
"Integrative Experiments Identify How Punishment Impacts Welfare in Public Goods Games,"
Papers
2508.17151, arXiv.org.
Handle:
RePEc:arx:papers:2508.17151
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.17151. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.